大型语言模型(LLM)主要是以非结构化、对话式数据作为输入,输出的也是类似的非结构化且对话式的内容。但我们现在有了一种新方法,称为“函数工具”(Functions Tools),这种方法可以帮助我们将LLM的输出变得结构化并格式化,这通常是为了准备提交给外部API的格式。
这个名字可能有点误导,有人可能会误以为LLM在运行代码或是执行某些集成操作以调用函数。但实际上,LLM的工作方式是通过识别用户输入中的关键实体和短语,并将这些与预定义的JSON架构进行匹配,从而填充预定义JSON文档中的参数。
这种结构化的JSON输出不仅可以用于数据的结构化处理,还可以用于数据存储等多种用途。
那么,关于函数的更多信息是什么呢?首先,函数调用允许您向助手描述自定义函数,这样可以访问外部API。这意味着您可以通过生成API预期的JSON格式输出来调用外部函数,而这个JSON已经预先填充了相关的输入参数。
函数调用实际上是一种结构化LLM输出的方式,用户可以为所谓的“函数”定义一个架构,LLM会选择一个架构并填充该架构的条目。也就是说,函数工具的作用仅仅是尝试以API期望的格式准备数据。
值得一提的是,函数已经成为Chat Completion API的一部分,并且现在助手也支持此功能。
下面是一个简单的应用实例:您可以复制以下Python代码并粘贴到笔记本中运行。您需要做的只是添加自己的OpenAI API密钥。
举个例子,助手接收到的用户输入是:“给Mobot AI的stone发送一封电子邮件,索要月度报告?”生成的JSON文档如下所示,邮件正文中包含换行。
send_email({
"to_address":"stone@mobot.ai",
"subject":"Request for Monthly Report",
"body":"Dear Stone,\n\n
I hope this message finds you well. I am reaching out to kindly
request the monthly report. Could you please provide the latest
update at your earliest convenience?\n\nThank you in advance for
your assistance.\n\n
Best regards,"
})
在代码部分,我们定义了一个类型为function
的工具,它包含to_address
、subject
和body
三个属性。
pip install --upgrade openai
########################################
import os
import openai
import requests
import json
from openai import OpenAI
########################################
api_key = "your openai api key goes here"
########################################
client = OpenAI(api_key=api_key)
########################################
assistant = client.beta.assistants.create(
instructions="You are a HR bot, answering HR questions.",
model="gpt-4-1106-preview",
tools=[{
"type": "function",
"function": {
"name": "send_email",
"description": "Please send an email.",
"parameters": {
"type": "object",
"properties": {
"to_address": {
"type": "string",
"description": "To address for email"
},
"subject": {
"type": "string",
"description": "subject of the email"
},
"body": {
"type": "string",
"description": "Body of the email"
}
}
}
}
}]
)
########################################
thread = client.beta.threads.create()
########################################
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content="Send Stone from Mobot AI an email asking for the monthly report?"
)
########################################
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id,
instructions="Use the function tool for this query."
)
########################################
run = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id
)
########################################
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
########################################
运行这段代码后,您可以在OpenAI仪表板中看到您的助手已被创建,并且在函数下创建了工具send_email
。现在您可以在这里设置助手的名称和指令。
当您在仪表板中与助手交互时,JSON文档会在响应中生成,您还可以在此处检查日志。
总结一下,函数是LLM向正确方向迈出的一步,通过它,我们可以定义数据输出的格式,并为LLM提供了一种结构或框架,使其能够执行某种类型的数据转换。
程序员为什么要学大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓