Mac下Ollama指定模型目录永久生效的方法:四种方案,只这一招管用!

之前已经介绍了非常多的Page Assist的功能,比如让本地大模型具备访问网站的能力,AI网页助手的使用等,你可以通过这里来访问Page Assist的所有功能介绍

今天是Page Assist系列的最后一篇,介绍如何通过Page Assist来管理Ollama的模型库,和本地知识库的功能。

一、模型库管理功能

在Page Assist的配置中有一个“管理模型”选项。可以通过这个功能来管理Ollama的本地模型。

可以看到,通过这里,可以添加、删除,以及重新拉取模型。

添加一个模型,以“nomic-embed-text”模型为例,这个模型也是后面使用本地知识库功能要用到的一个文本嵌入模型。

点击“添加新模型”,然后输入模型名称,最后点击“拉取模型”,这样Page Assist就会开始添加这个模型了。

可以通过右上角Page Assist的logo看到拉取的进度和状态

等到拉取成功后,刷新一下页面,就可以看到这个模型已经在Ollama的模型列表里了。

可以通过Ollama命令来验证


当然,如果为Page Assist添加了其它的在线大模型,在这里也可以看到,点击“Custom Models”就可以了。

二、本地知识库功能

Page Assist自带了本地知识库的功能,是用过RAG的方式实现的,所以首先要完成RAG相关配置

选择“RAG配置”,然后在“文本嵌入模型”那里选择刚才下载的nomic-embed-text模型。

其它的配置可以先用默认选择,如果后续需要,再做调整。这里有两个文本分割器的选项,默认是“递归字符文本分割器(RecursiveCharacterTextSplitter)”,还有一个是“字符文本分割器”。

它们主要是分割颗粒度的不同,大多数情况下,用默认的效果会比较好。下图节选自本地的Qwen2.5:7b的回答

配置完基本的“RAG设置”之后,就可以添加知识库了,点击“管理知识”,然后“添加新知识”来添加一个新的知识库

比如我这里创建一个名为“Prompt”的知识库,我在里面添加了两个prompt的示例列表的文件

点击“提交”之后,可以在“状态”那里看到Page Assist正在处理

根据提交的文档大小和数量,这个处理的时间长短也不一样,处理完成后,“状态”会变为“已完成”,这样,你的知识库就可以用了。注意,这个知识库后期是不能后添加新的文件的,如果有新的文件要添加,需要删除以后重新建立才可以,这点是很不方便的。

点击知识库标题栏前面的“+”号,可以看到当前知识库中的文档列表。

在对话窗口来使用知识库。选择“知识”按钮,就可以选择你创建的知识库了。

选择了知识库之后,你会看到对话界面发生了变化,没有了“联网查询”的选项,在上方会出现选择的知识库的名称。

这时,所有的查询都会先查询这个本地知识库了。

比如,我来询问一下如果做PPT的话,怎样写Prompt的效果比较好。点开下面的“引用”,可以看到模型引用了知识库中的内容。

点击具体的引用,可以看到相应的内容,方便你查看来源。


这里为什么会引用了四篇文档呢?这个是因为RAG的配置做了定义,把文档按照多大来做分割,达到了”嵌入大小“的定义,就会分割成一个新的文档,以及查询的时候查询文档的数量是多少,大家可以根据自己的使用情况来做调整。

好了,Page Assist的介绍就完结了,当然还有一些功能没有介绍到,比如“管理提示词”,不过相信经过了前面的这些功能配置,其它的功能配置起来都不是什么问题了。如果有需要介绍的内容,欢迎留言讨论。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值