2024 年,图灵为大家带来了许多备受欢迎的经典之作。从上市即热销的《大模型应用开发极简入门》,到 GitHub 上收获 99.3K Star 的算法教程《Hello 算法》,再到聚焦前沿技术热点的《ChatGPT高效提问:Prompt技巧大揭秘》和《ChatGPT从入门到精通》,这些实用性极强的科技类图书深受读者喜爱。
而 2025 年,图灵依旧诚意满满,带来超多重磅新书。图灵君也迫不及待地跟大家分享一波。其中包括未上市就爆火的大模型教程《从零开始构建大模型》,这本书在 GitHub 已有 33.3K Star,美亚评分高达 4.6 星,堪称技术人的新宠。还有详解大模型核心技术的《大模型技术 30 讲》。此外,2024 年的畅销书《大模型应用开发极简入门》也将在 2025 年迎来全新升级。
经典图书升级版同样值得期待:如高德纳的算法权威之作《计算机程序设计艺术 卷4B:组合算法(二)》,编译器设计领域经典之作《编译器设计(第3版)》,以及 R 领域的重量级著作《R数据科学(第2版)》等等。除此之外,还有很多原创类技术好书,每月持续更新,详情也请大家关注图灵后续的每月书讯预告!2025 年,我们期待跟读者一起探索更广阔的领域!
重磅新书
《从零开始构建大模型》
塞巴斯蒂安·拉施卡 | 著
忆臻 | 译
Github 33.3k Star,美亚 4.6 星评,全网爆火的 LLM 大模型教程。由畅销书作家塞巴斯蒂安·拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者如何创建自己的 LLM。
02
《大模型技术30讲》
塞巴斯蒂安·拉施卡 | 著
叶文滔 | 译
畅销书作者塞巴斯蒂安·拉施卡 (Sebastian Raschka)另一部新作,他擅长将复杂的 AI 相关主题提炼成任何人都可以理解的实用要点。如果你准备好超越介绍性概念并更深入地研究机器学习、深度学习和 AI,那么机器学习 Q 和 AI 的问答形式将让您快速轻松地完成工作,而无需大量繁琐工作。
本书中我们将学习各种新概念,如深度神经网络架构、计算机视觉、自然语言处理、产品化与部署和模型评估,以及区分自注意力与普通注意力,常见文本数据的数据增强技术,各种自监督学习技术,多 GPU 训练范式和各种生成式 AI 等技术。
03
(封面待定)
《百面大模型》
包梦蛟 | 著
大模型工程师面试必备,100 道常见的面试题目和解答一次性总结给你,全书系统全面地介绍了大模型相关的技术,涵盖语义表达、数据处理、预训练、对齐到垂类微调、组件、评估、架构、检索增强生成(RAG)、Agent、PEFT(参数高效微调)以及训练与推理等多方面的内容。
04
《大模型应用开发极简入门(第2 版)》
Olivier Caelen,Marie-Alice Blete | 著
何文斯 | 译
畅销书《大模型应用开发极简入门》升级版。本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的“最小可用知识”,带领大家快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。
05
《生成式AI 提示工程权威指南》
James Phoenix,Mike Taylor | 著
孙霄逸 | 译
本书展示如何通过提示工程学习在实际应用中运用大模型。对于初次将 LLM 和扩散模型集成到工作流程中的开发者而言,通常面临的问题是如何让这些模型提供足够可靠的结果,以便应用于自动化系统。作者 James Phoenix 和 Mike Taylor 介绍了一套称为提示工程的原则,帮助您更有效地与 AI 协作。
06
《AI 工程》
Chip Huyen | 著
本书首先概述了人工智能工程,解释了它与传统 ML 工程的区别,并讨论了新的人工智能堆栈。人工智能使用得越多,发生灾难性故障的机会就越多,评估就变得越重要。本书讨论了评估开放式模型的不同方法,包括快速发展的人工智能即评判方法。
07
《大模型实战》
Jay Alammar,Maarten Grootendorst | 著
李博杰 | 译
畅销书 Hands-on 系列新作。本书将为 Python 开发人员提供使用大模型的实用工具和概念,帮助大家掌握实际应用场景。你将学习如何利用预训练的大型语言模型进行文案撰写、文本摘要、语义搜索等任务,构建超越关键词匹配的智能系统。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓