119K star!无需GPU轻松本地部署多款大模型,DeepSeek支持!这个开源神器绝了

"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"

项目介绍

Ollama是一个开源的本地大语言模型部署框架,开发者只需通过简单的命令行操作,就能在个人电脑上快速部署运行包括Llama 3DeepSeek-R1Phi-4等在内的数十种前沿大模型。项目采用Go语言开发,支持Windows/macOS/Linux全平台,无需GPU即可运行,堪称个人开发者的AI神器。

核心功能亮点

🚀 一键模型部署

ollama run llama3  # 只需这行命令就能启动70亿参数的Llama3模型

支持超过50种主流开源模型,涵盖聊天、代码生成、多模态等各类场景,模型库持续更新中。

🌐 跨平台兼容

  • 原生支持M1/M2/M3芯片的Mac设备

  • Windows系统提供一键安装包

  • Linux服务器支持Docker部署

🔌 开放API接口

import requests

response = requests.post(
    "http://localhost:11434/api/generate",
    json={
        "model": "deepseek-r1",
        "prompt": "用Python实现快速排序"
    }
)

提供与OpenAI兼容的REST API,轻松集成到现有应用。

📦 模型全生命周期管理

ollama list       # 查看已安装模型
ollama pull qwen  # 下载新模型
ollama rm gemma3  # 删除旧模型

🌍 丰富生态支持

  • 与Raycast、Obsidian等流行工具深度整合

  • 支持LangChain、LlamaIndex等开发框架

  • 提供iOS/Android移动端解决方案

技术架构解析

模块技术方案特点说明
核心引擎Go语言 + llama.cpp极致性能优化
模型格式GGUF支持量化与硬件加速
API层REST/WebSocket兼容OpenAI标准
部署方案多平台二进制包 + Docker开箱即用
扩展生态200+社区插件涵盖开发/运维/监控全流程

五大典型应用场景

1. 本地AI助手开发

// 基于Electron构建桌面应用
const response = await ollama.generate({
  model: 'mistral',
  prompt: '帮我写封英文会议邀请函'
});

2. 自动化文档处理

# 文献翻译并保留格式
from ollama import Client
client = Client()
translated = client.translate(
    document="paper.pdf",
    target_lang="zh",
    keep_layout=True
)

3. 私有知识库构建

  1. 使用nomic-embed-text模型生成向量

  2. 通过llama3实现语义检索

  3. 结合LangChain构建问答系统

4. 多模态应用开发

ollama run llava  # 启动视觉语言模型

支持图像描述、文档解析等跨模态任务。

5. AI Agent开发

# 创建天气预报Agent
from crewai import Agent

meteorologist = Agent(
    role='气象专家',
    goal='生成精准天气预报',
    backstory='资深气象分析师',
    tools=[ollama_tool],
    verbose=True
)

与同类产品对比

功能项OllamaLM StudioGPT4All
模型支持数量50+20+10+
本地部署难度⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
API兼容性OpenAI自定义有限支持
扩展插件200+50+10+
硬件要求无GPU需要GPU无GPU

核心优势

  1. 真正的开箱即用体验

  2. 活跃的开发者社区支持

  3. 企业级功能免费开放

  4. 持续更新的模型库

快速入门指南

第一步:安装运行

# Mac/Linux
brew install ollama

# Windows
下载安装包双击运行

第二步:运行模型

ollama run deepseek-r1
>>> 你好,有什么可以帮助您?

第三步:API调用

import ollama

response = ollama.chat(
    model='llama3',
    messages=[{'role': 'user', 'content': '用Rust实现二叉树'}]
)
print(response['message']['content'])

同类项目推荐

  1. Open WebUI - 提供美观的Web管理界面

  2. LocalAI - 支持更多商业模型

  3. Text-Generation-Webui - 适合高级调参

  4. LM Studio - 专注桌面端体验

  5. Jan - 移动端优先解决方案

项目地址

https://github.com/ollama/ollama

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值