"只需一行命令就能在本地运行Llama 3、DeepSeek-R1等前沿大模型,支持Windows/Mac/Linux全平台,这个开源项目让AI开发从未如此简单!"
项目介绍
Ollama
是一个开源的本地大语言模型部署框架,开发者只需通过简单的命令行操作,就能在个人电脑上快速部署运行包括Llama 3、DeepSeek-R1、Phi-4等在内的数十种前沿大模型。项目采用Go语言开发,支持Windows/macOS/Linux全平台,无需GPU即可运行,堪称个人开发者的AI神器。
核心功能亮点
🚀 一键模型部署
ollama run llama3 # 只需这行命令就能启动70亿参数的Llama3模型
支持超过50种主流开源模型,涵盖聊天、代码生成、多模态等各类场景,模型库持续更新中。
🌐 跨平台兼容
-
原生支持M1/M2/M3芯片的Mac设备
-
Windows系统提供一键安装包
-
Linux服务器支持Docker部署
🔌 开放API接口
import requests
response = requests.post(
"http://localhost:11434/api/generate",
json={
"model": "deepseek-r1",
"prompt": "用Python实现快速排序"
}
)
提供与OpenAI兼容的REST API,轻松集成到现有应用。
📦 模型全生命周期管理
ollama list # 查看已安装模型
ollama pull qwen # 下载新模型
ollama rm gemma3 # 删除旧模型
🌍 丰富生态支持
-
与Raycast、Obsidian等流行工具深度整合
-
支持LangChain、LlamaIndex等开发框架
-
提供iOS/Android移动端解决方案
技术架构解析
模块 | 技术方案 | 特点说明 |
---|---|---|
核心引擎 | Go语言 + llama.cpp | 极致性能优化 |
模型格式 | GGUF | 支持量化与硬件加速 |
API层 | REST/WebSocket | 兼容OpenAI标准 |
部署方案 | 多平台二进制包 + Docker | 开箱即用 |
扩展生态 | 200+社区插件 | 涵盖开发/运维/监控全流程 |
五大典型应用场景
1. 本地AI助手开发
// 基于Electron构建桌面应用
const response = await ollama.generate({
model: 'mistral',
prompt: '帮我写封英文会议邀请函'
});
2. 自动化文档处理
# 文献翻译并保留格式
from ollama import Client
client = Client()
translated = client.translate(
document="paper.pdf",
target_lang="zh",
keep_layout=True
)
3. 私有知识库构建
-
使用
nomic-embed-text
模型生成向量 -
通过
llama3
实现语义检索 -
结合LangChain构建问答系统
4. 多模态应用开发
ollama run llava # 启动视觉语言模型
支持图像描述、文档解析等跨模态任务。
5. AI Agent开发
# 创建天气预报Agent
from crewai import Agent
meteorologist = Agent(
role='气象专家',
goal='生成精准天气预报',
backstory='资深气象分析师',
tools=[ollama_tool],
verbose=True
)
与同类产品对比
功能项 | Ollama | LM Studio | GPT4All |
---|---|---|---|
模型支持数量 | 50+ | 20+ | 10+ |
本地部署难度 | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ |
API兼容性 | OpenAI | 自定义 | 有限支持 |
扩展插件 | 200+ | 50+ | 10+ |
硬件要求 | 无GPU | 需要GPU | 无GPU |
核心优势:
-
真正的开箱即用体验
-
活跃的开发者社区支持
-
企业级功能免费开放
-
持续更新的模型库
快速入门指南
第一步:安装运行
# Mac/Linux
brew install ollama
# Windows
下载安装包双击运行
第二步:运行模型
ollama run deepseek-r1
>>> 你好,有什么可以帮助您?
第三步:API调用
import ollama
response = ollama.chat(
model='llama3',
messages=[{'role': 'user', 'content': '用Rust实现二叉树'}]
)
print(response['message']['content'])
同类项目推荐
-
Open WebUI - 提供美观的Web管理界面
-
LocalAI - 支持更多商业模型
-
Text-Generation-Webui - 适合高级调参
-
LM Studio - 专注桌面端体验
-
Jan - 移动端优先解决方案
项目地址
https://github.com/ollama/ollama
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓