23.5K star!零代码构建AI知识库,这个开源神器让问答系统开发像搭积木一样简单!

FastGPT 是一个基于大语言模型的智能知识库平台,提供开箱即用的数据处理、RAG检索和可视化AI工作流编排能力,让你无需编写代码就能轻松构建复杂的问答系统!

为什么你需要关注这个项目?

在AI技术爆发的2025年,企业级知识库系统已成为数字化转型的标配。传统开发方式需要投入大量人力进行算法调优和系统搭建,而FastGPT通过三大革新彻底改变了游戏规则:

  1. 可视化编排:像搭积木一样设计AI工作流

  2. 零代码部署:5分钟完成从数据导入到服务上线

  3. 多模型支持:无缝对接OpenAI/Claude/DeepSeek等主流大模型

功能界面

 

五大核心功能解析

🧩 可视化工作流编排

  • 拖拽式节点设计:对话流程、插件调用、条件判断一键配置

  • 实时调试面板:完整展示中间处理结果和上下文数据

  • 支持循环调用和用户交互:实现复杂业务逻辑

📚 智能知识库管理

  • 多格式文件支持:PDF/Word/Excel/PPT/网页一键解析

  • 混合检索技术:语义搜索+关键词匹配双引擎

  • 数据版本控制:记录每次chunk修改历史

🚀 企业级功能特性

  • 多租户管理:支持团队协作和权限控制

  • API市场:快速接入第三方服务(飞书/企微/钉钉)

  • 运营分析:对话记录标注和数据分析看板

🔧 开发者友好设计

  • 开放API接口:完整对齐OpenAI接口规范

  • 自定义插件:支持Python/JS代码扩展

  • 多向量库支持:PgVector/Milvus自由切换

🌐 多场景应用案例

  • 智能客服:7x24小时自动应答

  • 企业知识库:合同/手册智能查询

  • 教育领域:个性化学习助手

  • 金融行业:合规文档自动解析

技术架构解析

技术栈功能说明优势特性
Next.js前端框架服务端渲染+API路由一体化
TypeScript开发语言强类型校验+智能提示
Chakra UI界面组件库高定制化+无障碍支持
MongoDB主数据库灵活文档存储
PostgreSQL向量数据库(PG Vector插件)支持相似度检索
Docker容器化部署一键环境配置

三步快速入门指南

第一步:数据准备

支持多种数据导入方式:

# 通过API批量导入
import requests

url = "https://api.fastgpt.in/v1/dataset/upload"
headers = {"Authorization": "Bearer your_api_key"}
files = {'file': open('企业知识库.pdf', 'rb')}

response = requests.post(url, headers=headers, files=files)
print(response.json())

第二步:工作流设计

  1. 拖入「用户输入」节点

  2. 连接「知识库检索」模块

  3. 添加「大模型生成」组件

  4. 配置「飞书推送」输出

第三步:服务部署

# 使用Docker快速部署
docker run -d --name fastgpt \
  -p 3000:3000 \
  -e MONGODB_URI=mongodb://localhost:27017 \
  -e PG_VECTOR_URL=postgresql://user:pass@localhost:5432 \
  labring/fastgpt:latest

与同类项目对比

项目名称核心优势局限性FastGPT优势
LangChain灵活的组合式架构需要编码能力可视化编排+零代码部署
LlamaIndex优秀的检索性能功能单一完整的企业级功能套件
PrivateGPT本地化部署仅支持单一模型多模型自由切换
ChatPDF专注PDF解析场景受限支持20+文件格式

为什么选择FastGPT?

  1. 商业友好协议:允许直接商用(非SaaS)

  2. 持续更新:平均每周发布新功能

  3. 企业级支持:提供付费订阅和技术服务

  4. 生态丰富:对接Sealos/Laf等云原生平台

同类项目推荐

项目地址

https://github.com/labring/FastGPT

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值