FastGPT 是一个基于大语言模型的智能知识库平台,提供开箱即用的数据处理、RAG检索和可视化AI工作流编排能力,让你无需编写代码就能轻松构建复杂的问答系统!
为什么你需要关注这个项目?
在AI技术爆发的2025年,企业级知识库系统已成为数字化转型的标配。传统开发方式需要投入大量人力进行算法调优和系统搭建,而FastGPT通过三大革新彻底改变了游戏规则:
-
可视化编排:像搭积木一样设计AI工作流
-
零代码部署:5分钟完成从数据导入到服务上线
-
多模型支持:无缝对接OpenAI/Claude/DeepSeek等主流大模型
功能界面
五大核心功能解析
🧩 可视化工作流编排
-
拖拽式节点设计:对话流程、插件调用、条件判断一键配置
-
实时调试面板:完整展示中间处理结果和上下文数据
-
支持循环调用和用户交互:实现复杂业务逻辑
📚 智能知识库管理
-
多格式文件支持:PDF/Word/Excel/PPT/网页一键解析
-
混合检索技术:语义搜索+关键词匹配双引擎
-
数据版本控制:记录每次chunk修改历史
🚀 企业级功能特性
-
多租户管理:支持团队协作和权限控制
-
API市场:快速接入第三方服务(飞书/企微/钉钉)
-
运营分析:对话记录标注和数据分析看板
🔧 开发者友好设计
-
开放API接口:完整对齐OpenAI接口规范
-
自定义插件:支持Python/JS代码扩展
-
多向量库支持:PgVector/Milvus自由切换
🌐 多场景应用案例
-
智能客服:7x24小时自动应答
-
企业知识库:合同/手册智能查询
-
教育领域:个性化学习助手
-
金融行业:合规文档自动解析
技术架构解析
技术栈 | 功能说明 | 优势特性 |
---|---|---|
Next.js | 前端框架 | 服务端渲染+API路由一体化 |
TypeScript | 开发语言 | 强类型校验+智能提示 |
Chakra UI | 界面组件库 | 高定制化+无障碍支持 |
MongoDB | 主数据库 | 灵活文档存储 |
PostgreSQL | 向量数据库(PG Vector插件) | 支持相似度检索 |
Docker | 容器化部署 | 一键环境配置 |
三步快速入门指南
第一步:数据准备
支持多种数据导入方式:
# 通过API批量导入
import requests
url = "https://api.fastgpt.in/v1/dataset/upload"
headers = {"Authorization": "Bearer your_api_key"}
files = {'file': open('企业知识库.pdf', 'rb')}
response = requests.post(url, headers=headers, files=files)
print(response.json())
第二步:工作流设计
-
拖入「用户输入」节点
-
连接「知识库检索」模块
-
添加「大模型生成」组件
-
配置「飞书推送」输出
第三步:服务部署
# 使用Docker快速部署
docker run -d --name fastgpt \
-p 3000:3000 \
-e MONGODB_URI=mongodb://localhost:27017 \
-e PG_VECTOR_URL=postgresql://user:pass@localhost:5432 \
labring/fastgpt:latest
与同类项目对比
项目名称 | 核心优势 | 局限性 | FastGPT优势 |
---|---|---|---|
LangChain | 灵活的组合式架构 | 需要编码能力 | 可视化编排+零代码部署 |
LlamaIndex | 优秀的检索性能 | 功能单一 | 完整的企业级功能套件 |
PrivateGPT | 本地化部署 | 仅支持单一模型 | 多模型自由切换 |
ChatPDF | 专注PDF解析 | 场景受限 | 支持20+文件格式 |
为什么选择FastGPT?
-
商业友好协议:允许直接商用(非SaaS)
-
持续更新:平均每周发布新功能
-
企业级支持:提供付费订阅和技术服务
-
生态丰富:对接Sealos/Laf等云原生平台
同类项目推荐:
-
DeepSeek-R1:国产顶尖大模型解决方案
-
Dify:可视化LLM应用开发平台
-
OneAPI:多模型管理中间件
-
LangChain-Chatchat:本地知识库问答系统
项目地址
https://github.com/labring/FastGPT
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓