从模型到大模型,从计算机到人工智能,从甲骨文到元宇宙,科技飞速迭代,文明源远流长。
在第30个“世界读书日”到来之际,精选5本AI大模型方向的图书,以帮助您多维度理解AI大模型的脉络,共探AI时代的核心算法与人文思考。
PS:这些书都已经整理并打包好pdf,文末分享~
1.《大语言模型:基础与前沿》
熊涛 著
2024年,人民邮电出版社
内容简介:
本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景多方面的内容。首先,本书介绍了人工智能领域的进展和趋势;其次,探讨了语言模型的基本概念和架构、Transformer、预训练目标和解码策略、上下文学习和轻量级微调、稀疏专家模型、检索增强型语言模型、对齐语言模型与人类偏好、减少偏见和有害性以及视觉语言模型等内容;最后,讨论了语言模型对环境的影响。
这份「大模型学习书籍」已经整理并打包好pdf了,放在这↓↓↓↓↓↓↓↓
2.《AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型》
吴茂贵 著
2024年,机械工业出版社
内容简介:
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。
3.《从零构建大模型》 - Sebastian Raschka
内容简介:
书中涵盖了数据处理、分词、注意力机制、Transformer 架构实现、预训练、指令微调(包括 RLHF 的概念)等关键环节。作者是大模型领域的知名科普作家,擅长深入浅出地解释大模型的各种技术原理,也是知名 GitHub 项目 LLMs-from-scratch 的创建者,在“动手”这件事上很有经验。
读这本书,最大的收获不是得到一个多强的模型,而是通过实践,真正理解模型工作的内部机制和各个组件的作用。配套的 GitHub 代码和视频也很有价值。
4. 《大模型技术30讲》 - Sebastian Raschka
内容简介:
如果你想快速了解 AI 相关的一些关键概念和最新进展,查漏补缺,这本书提供了一种高效的方式。它的覆盖面广,可以帮助你建立更全面的知识图谱。
同一位作者,拉施卡,还有一本《大模型技术30讲》。这本书换了个角度,不再是完整构建一个模型,而是采用问答的形式,串起了当前机器学习和 AI 领域的 30 个重要问题。
内容不局限于 LLM,还包括神经网络、计算机视觉、生产部署、模型评估等更广泛的主题,比如自监督学习、小样本学习、多 GPU 训练模式、Transformer 为何成功、如何评测生成模型等等。
5. 《Transformer自然语言处理实战》
内容简介:
理论和基础固然重要,但最终还是要落地应用。这本《Transformer自然语言处理实战》就是一本关注实践的书,尤其侧重于 Hugging Face 生态。
作者来自 Hugging Face,他们详细介绍了如何使用 Transformers 库来解决实际的 NLP 问题,比如文本分类、命名实体识别、文本生成、摘要、问答系统等。书中不仅讲解了 Transformer 的架构(编码器、解码器、注意力),还涉及了模型微调、知识蒸馏、量化、ONNX 推理优化等实用技术,甚至包括了零样本和少样本学习,以及如何从头训练一个模型。
对于想利用现有工具和模型快速开发 AI 应用的开发者来说,这本书非常实用。
技术发展很快,新模型、新应用让人眼花缭乱。但构建这些模型的基本原理、核心思想,以及工程实践中的挑战,变化相对没有那么快。花点时间,读几本好书,深入理解一些基础的东西,总归是更有价值的投入。希望这份书单对你有帮助。
这份「大模型学习书籍」已经整理并打包好pdf了,放在这↓↓↓↓↓↓↓↓