Ollama系列04:进阶篇-搭建私有的知识库和问答系统—cherryStudio版

本文是Ollama系列教程的第4篇,在前面的3篇内容中,我们分享了如何在本地安装ollama、运行deepseek等大模型、以及如何在chatbox和cherryStudio中使用本地ollama中的大模型,我们创建了私有的AI对话框和智能体。

在本篇内容中,我们将分享如何创建和使用知识库,让AI更懂你。

为什么需要AI知识库

知乎版

AI知识库,作为人工智能技术与传统知识库概念的融合,是指利用人工智能算法和技术构建、管理和维护的信息存储系统。它不仅包含了大量的结构化、半结构化和非结构化数据,还具备智能检索、推理分析、自我学习和优化等高级功能。AI知识库通过模拟人类的认知过程,实现了对知识的有效组织和高效利用,为各种应用场景提供了强大的支持。

人话版

知识库是我们的私有数据(你的财务状态、体检报告等),为了让AI生成更准确、更符合我们需求的内容,需要在提问时将内容告诉AI

知识库是如何工作的?

知识库工作流程图(来源于CherryStudio Doc):

在上面的流程图里,我们可以看到知识库工作的步骤:

  1. 用户提问时,AI工具先查询知识库里已有的内容
  2. 将查询到的内容和用户的提问发送给大模型
  3. 大模型根据提供的内容生成答案

使用知识库增强检索来生成答案的技术有一个专门的名词RAG,这里面涉及到几个概念,如果你感兴趣可以继续深挖(由于本篇内容针对的是入门教程,不做太多概念性的讲解,后面有机会了再专门介绍)

构建私有知识库

接下来我们通过cherryStudio来构建私有的知识库。

首先打开cherryStudio,点击左侧的知识库:

获取嵌入模型

在构建知识库的过程中,需要选择要使用的嵌入模型。嵌入模型的主要功能是将用户的文本、图片等内容生成向量数据,用作向量搜索的。

在ollama中有很多嵌入模型供我们选择使用。我这里使用的是bge-m3,你可以通过下面的指令获取:

 
ollama pull bge-m3

注意:嵌入模型保存后不允许修改

添加知识内容

为了进行演示,我们将本系列教程的前三篇放入知识库中:

然后创建一个新的对话,在对话中选择创建的知识库:

验证一下效果(效果并不理想):

话外音

感觉deepseek又开始一本正经的胡说八道了,这可能和我们选择的模型有关,我们当前使用的是1.5b的模型,如果你的硬件允许,可以尝试下载更大的模型进行测试

我换了一个deepseek-r1:7b的模型重新验证了一下,效果比上面的要好一些:

影响知识库的因素

通过上面的例子我们可以看到,当切换了模型之后,生成内容的准确性有所提高。这说明我们需要尝试不同的模型,来达到自己满意的效果。

通常来说影响知识库输出质量的因素有:

  • 文档的质量
  • 嵌入模型的能力
  • 向量数据库的检索
  • 文档相关性排序能力
  • 系统Prompt质量
  • 大模型生成能力

当我们在进行实践时,切记一定要先进行验证,验证满意后再进行大规模的实施。

总结

本文分享了在cherryStudio中使用本地ollama提供的模型来构建私有知识库的功能,在文章的末尾我们讨论了影响知识库输出质量的一些因素,在接下来的章节中,我们将讨论如何优化知识库输出质量,让AI给出我们更好的答案。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值