不积跬步无以至千里,不积小流无以成江海!--《荀子 劝学》
我是对本地大模型有执念的!因为它安全性好,数据完全被自己掌控。在前面的内容里面分享了如何使用OllamaSharp
访问ollama接口,今天分享如何使用Semantic Kernel来访问ollama接口。
关于Semantic Kernel
Semantic Kernel(SK) 是一款模型无关的SDK,能够帮助开发者快速构建、编排和部署AI代理及多代理系统。无论是开发简单的聊天机器人,还是构建复杂的多代理工作流,该工具都能以企业级的可靠性和灵活性提供所需支持。
为什么使用SK?
我们可以直接使用类似OllamaSharp
这样的SDK来调用某个大模型的接口,但是如果我们即要访问Ollama里面的模型,又要访问OpenAI的接口,还要兼容DeepSeek的接口,这个时候就需要一个集成开发框架了。在.net平台,最好用且功能最全的,目前只有SK(如果还有其它框架请不吝赐教)。
使用SK
首先要添加框架引用:
dotnet add package Microsoft.SemanticKernel |
由于我们要访问Ollama,因此还需要添加SK的Ollama连接器:
dotnet add package Microsoft.SemanticKernel.Connectors.Ollama |
注意:为了避免编码时收到SKEXP0070、SKEXP0010这种错误,我们先在项目里面把他们屏蔽掉。
<PropertyGroup> | |
...... | |
<NoWarn>$(NoWarn);SKEXP0001,SKEXP0010,SKEXP0070</NoWarn> | |
</PropertyGroup> | |
初始化SK
var endpoint = new Uri("http://localhost:11434"); | |
var ollama = new OllamaApiClient(endpoint); | |
// Create a kernel builder | |
var builder = Kernel.CreateBuilder().AddOllamaChatCompletion(ollama); | |
// Build the kernel | |
Kernel kernel = builder.Build(); |
添加和使用插件
我们可以把sk里面的插件理解成function calling里面的function,本质上都是大预言模型里面的tools节点
kernel.Plugins.AddFromType<DateTimePlugin>("DateTimePlugin"); | |
var executionSettings = new OllamaPromptExecutionSettings() | |
{ | |
FunctionChoiceBehavior = FunctionChoiceBehavior.Auto(), | |
}; |
代码说明:
- 添加插件,插件定义见下文
- 设置插件的执行方式,我们采用自动选择和执行插件
Plugin的定义
internal class DateTimePlugin | |
{ | |
[KernelFunction("get_current_datetime")] | |
[Description("Get current datetime and day of week")] | |
public Task<string> GetCurrentDateTime() | |
{ | |
return Task.FromResult(DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss ddd")); | |
} | |
} |
创建对话
var chatService = kernel.GetRequiredService<IChatCompletionService>(); | |
Console.WriteLine(); | |
Console.WriteLine($"Chat with {ollama.SelectedModel}"); | |
var systemPrompt = "You are a helpful assistant that knows about AI."; | |
var chatHistory = new ChatHistory(systemPrompt); | |
Console.WriteLine($">>System: {systemPrompt}"); | |
while (true) | |
{ | |
Console.Write(">>User: "); | |
var message = Console.ReadLine(); | |
chatHistory.AddUserMessage(message); | |
Console.Write(">>Assistant: "); | |
var reply = await chatService.GetChatMessageContentAsync(chatHistory, | |
executionSettings: executionSettings, | |
kernel: kernel); | |
Console.WriteLine(reply); | |
// Add the message from the agent to the chat history | |
chatHistory.AddMessage(reply.Role, reply.Content ?? string.Empty); | |
} | |
代码说明:
- 首先在这段代码中创建一个
chatService
,用来和大模型进行对话 systemPrompt
是我们预设的大模型系统级别指令,通过systemPrompt
可以更好的控制大模型的输出chatHistory
用来存储会话历史- 在
while
循环中进行对话,同时将user和assistant的对话内容临时存储在chatHistory
中
总结
以上就是今天分享的全部内容,主要介绍如何使用semantic kernel,并通过sk来访问ollama提供的大模型服务。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓