Ollama系列08:semantic kernel调用ollama接口

不积跬步无以至千里,不积小流无以成江海!--《荀子 劝学》

我是对本地大模型有执念的!因为它安全性好,数据完全被自己掌控。在前面的内容里面分享了如何使用OllamaSharp访问ollama接口,今天分享如何使用Semantic Kernel来访问ollama接口。

关于Semantic Kernel

Semantic Kernel(SK) 是一款模型无关的SDK,能够帮助开发者快速构建、编排和部署AI代理及多代理系统。无论是开发简单的聊天机器人,还是构建复杂的多代理工作流,该工具都能以企业级的可靠性和灵活性提供所需支持。

地址:GitHub - microsoft/semantic-kernel: Integrate cutting-edge LLM technology quickly and easily into your apps

为什么使用SK?

我们可以直接使用类似OllamaSharp这样的SDK来调用某个大模型的接口,但是如果我们即要访问Ollama里面的模型,又要访问OpenAI的接口,还要兼容DeepSeek的接口,这个时候就需要一个集成开发框架了。在.net平台,最好用且功能最全的,目前只有SK(如果还有其它框架请不吝赐教)。

使用SK

首先要添加框架引用:

 
dotnet add package Microsoft.SemanticKernel

由于我们要访问Ollama,因此还需要添加SK的Ollama连接器:

 
dotnet add package Microsoft.SemanticKernel.Connectors.Ollama

注意:为了避免编码时收到SKEXP0070、SKEXP0010这种错误,我们先在项目里面把他们屏蔽掉。

 
<PropertyGroup>
......
<NoWarn>$(NoWarn);SKEXP0001,SKEXP0010,SKEXP0070</NoWarn>
</PropertyGroup>

初始化SK

 
var endpoint = new Uri("http://localhost:11434");
var ollama = new OllamaApiClient(endpoint);
// Create a kernel builder
var builder = Kernel.CreateBuilder().AddOllamaChatCompletion(ollama);
// Build the kernel
Kernel kernel = builder.Build();

添加和使用插件

我们可以把sk里面的插件理解成function calling里面的function,本质上都是大预言模型里面的tools节点

 
kernel.Plugins.AddFromType<DateTimePlugin>("DateTimePlugin");
var executionSettings = new OllamaPromptExecutionSettings()
{
FunctionChoiceBehavior = FunctionChoiceBehavior.Auto(),
};

代码说明:

  1. 添加插件,插件定义见下文
  2. 设置插件的执行方式,我们采用自动选择和执行插件

Plugin的定义

 
internal class DateTimePlugin
{
[KernelFunction("get_current_datetime")]
[Description("Get current datetime and day of week")]
public Task<string> GetCurrentDateTime()
{
return Task.FromResult(DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss ddd"));
}
}

创建对话

 
var chatService = kernel.GetRequiredService<IChatCompletionService>();
Console.WriteLine();
Console.WriteLine($"Chat with {ollama.SelectedModel}");
var systemPrompt = "You are a helpful assistant that knows about AI.";
var chatHistory = new ChatHistory(systemPrompt);
Console.WriteLine($">>System: {systemPrompt}");
while (true)
{
Console.Write(">>User: ");
var message = Console.ReadLine();
chatHistory.AddUserMessage(message);
Console.Write(">>Assistant: ");
var reply = await chatService.GetChatMessageContentAsync(chatHistory,
executionSettings: executionSettings,
kernel: kernel);
Console.WriteLine(reply);
// Add the message from the agent to the chat history
chatHistory.AddMessage(reply.Role, reply.Content ?? string.Empty);
}

代码说明:

  1. 首先在这段代码中创建一个chatService,用来和大模型进行对话
  2. systemPrompt是我们预设的大模型系统级别指令,通过systemPrompt可以更好的控制大模型的输出
  3. chatHistory用来存储会话历史
  4. while循环中进行对话,同时将user和assistant的对话内容临时存储在chatHistory

总结

以上就是今天分享的全部内容,主要介绍如何使用semantic kernel,并通过sk来访问ollama提供的大模型服务。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值