- 博客(5)
- 收藏
- 关注
原创 【论文笔记】Multi-Sample Dropout for Accelerated Training and Better Generalization
论文简介:训练更快,泛化更强的Dropout:Multi-Sample Dropout论文标题:Multi-Sample Dropout for Accelerated Training and Better Generalization论文链接:https://arxiv.org/pdf/1905.09788.pdf论文作者:{Hiroshi Inoue}本文阐述的也是一种 dropout 技术的变形——multi-sample dropout。传统 dropout 在每轮训练时会从输入中随机选择一
2022-06-28 22:37:14
210
原创 FGM对抗训练
对抗训练无论是在CV领域还是在NLP领域都具有举足轻重的地位,在NLP比赛中,抗训练确确实实能够提升模型在具体任务上的泛化性能。
2022-06-26 13:23:55
5379
原创 基于bert继续预训练
在目前的各项NLP任务中,如果要在特定任务或者领域应用文本分类,数据分布一定是有一些差距的。这时候可以考虑进行深度预训练。进行继续预训练,有利于提升任务的性能。
2022-06-25 22:40:18
2788
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人