jupyter的这个最强插件你居然还不知道?

本文介绍了jupyter中最强大的插件elyra,它专注于帮助用户搭建数据分析工作流。通过elyra,用户可以交互式地组织和运行多个文件构成的工作流,简化了流程设置和错误处理。此外,elyra还提供了跨 notebook 传递全局变量的功能,增强了在jupyter环境中的工作效率。

1 简介

jupyter lab是我最喜欢的编辑器,在过往的文章中也给大家介绍过很多相关资源和实用插件,但本文要给大家介绍的jupyter lab插件elyra,绝对是我使用过的最强大的jupyter lab插件没有之一,因为它的核心功能就是帮助我们解决数据分析工作中非常重要的问题——「搭建工作流」。

在这里插入图片描述

2 利用elyra搭建工作流

在安装elyra插件集之前,请确保你的jupyter lab版本在2.0及以上,并且已经安装好了nodejs也就是所有jupyter lab拓展插件都需要的依赖。

不像常规的jupyter lab插件的安装方法,我们执行下列命令即可安装elyra下集成的多个插件:

pip install --upgrade elyra && jupyter lab build

安装完之后,你的jupyter lab操作界面外观会发生一些变化,我们先记住在安装elyra之前我们的jupyter lab界面长啥样(我使用的主题感兴趣的朋友可以通过jupyter labextension install jupyterlab-tailwind-theme来安装):

在这里插入图片描述

而在安装完成重启jupyter lab之后,除了左上角的jupyterlogo变化了之外,还新增了图中我用红框框选出来的地方:

在这里插入图片描述

接下来我们就来介绍如何利用elyra交互式地「搭建工作流」。

elyra赋予了我们通过交互的方式将若干个ipynb文件组织成工作流的能力,为了方便演示,这里我们创建几个带有简单流程代码的ipynb文件:

码字不易废话两句:有需要python学习资料的或者有技术问题交流 “点击”即可

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

接着我们在「Launcher」页面点击Pipeline Editor打开用来交互式编辑「notebook流水线」的界面:

在这里插入图片描述

在这里插入图片描述

直接将侧边栏中对应的step1.ipynb文件拖拽进来:

在这里插入图片描述

点击流水线界面中ipynb文件对应节点右侧的三个圆点,可以打开更多功能选项:

在这里插入图片描述

因为我们是本地环境,所以这里只需要在properties下必填参数Runtime Image中随便选一个就行:

在这里插入图片描述

保存之后,就完成了本地环境下单个节点的必要参数设置,同样的将其他ipynb文件拖拽进来,各自配置好必要参数再如图13所示将各节点联结起来:

在这里插入图片描述

这样我们的流水线就搭建好了,是不是非常滴好玩~,接着点击左上角的运行按钮,输入流水线名称后即可开始运行我们的工作流:

在这里插入图片描述

工作流执行成功之后也会有提示:

在这里插入图片描述

如果工作流执行到某个节点发生程序错误,也会有非常人性化的提示:

在这里插入图片描述

对应出错的ipynb错误代码块上方,elyra也会帮我们创建记录错误信息的markdown单元格:

在这里插入图片描述

最好用的是,配合魔术命令%store,我们就可以跨notebook传递全局变量,而不需要再往外写出先前节点的结果文件:

利用%store 变量名将某个变量转化为跨kernel的全局变量:

在这里插入图片描述

利用%store -r 变量名将跨kernel全局变量中的指定变量加载到当前kernel中:

在这里插入图片描述

而除了「搭建工作流」这个核心功能外,elyra还有很多其他的实用功能,感兴趣的朋友可以前往官方文档(https://elyra.readthedocs.io/en/latest/)自行阅读学习。

在这里插入图片描述

以上就是小编今天为大家带来的内容,小编本身就是一名python开发工程师,我自己花了三天时间整理了一套python学习教程,从最基础的python脚本到web开发,爬虫,数据分析,数据可视化,机器学习,等,这些资料有想要的小伙伴 " 点击 " 即可领取

### ### Jupyter 插件是什么? Jupyter 插件是用于增强 Jupyter Notebook 或 JupyterLab 功能的扩展工具。这些插件可以提升交互式编程、数据分析和文档编写的效率,涵盖从代码补全、可视化增强到版本控制等多种用途。Jupyter 插件通常通过 `nbextensions` 或 `JupyterLab extensions` 的形式提供[^2]。 --- ### ### Jupyter 插件的主要功能和用途 #### 1. **代码增强与补全** Jupyter 插件可以提供更强大的代码补全、语法高亮和函数提示功能。例如,`Hinterland` 插件可以启用自动补全建议,而 `Jupyter Notebook Completion` 插件则提供更智能的 Python 代码补全。 ```python # 示例:使用 Hinterland 插件后,输入函数名时会自动弹出补全建议 import pandas as pd df = pd.read_csv('data.csv') # 输入 read_csv 时自动提示参数 ``` #### 2. **交互式小部件(Widgets)** 插件如 `ipywidgets` 允许在 Notebook 中创建交互式控件(如滑块、按钮、下拉菜单),非常适合数据探索和教学演示。 ```python from ipywidgets import interact def square(x): return x ** 2 interact(square, x=(0, 100)) # 创建一个滑动条,实时计算平方值 ``` #### 3. **版本控制与协作** `jupyter_contrib_nbextensions` 插件提供版本控制功能,支持查看单元格的历史修改记录,便于多人协作开发和调试。 #### 4. **Markdown 与文档增强** 插件如 `Collapsible Headings` 和 `Table of Contents` 可以提升 Markdown 的可读性和结构化展示,适合撰写技术文档或教学材料。 #### 5. **代码折叠与组织** `Codefolding` 插件允许折叠长段代码,提高代码的可读性,尤其适用于复杂逻辑或长函数。 #### 6. **性能分析与调试** 插件如 `jupyter-resource-usage` 可以监控内核的内存和 CPU 使用情况,帮助优化代码性能。 #### 7. **Jupyter Notebook 与 PyCharm 集成** 通过安装 Jupyter 插件,可以在 PyCharm 中直接打开 `.ipynb` 文件,结合 Jupyter 的交互执行与 PyCharm 的智能代码补全功能[^4]。 ```python # 在 PyCharm 中使用 Jupyter 插件运行单元格 import numpy as np np.random.rand(3, 3) # 执行后会在右侧显示结果 ``` #### 8. **自定义界面与功能** JupyterLab 支持通过插件扩展其用户界面,例如添加新的面板、菜单项或文件浏览器,从而实现个性化工作流。 --- ### ### Jupyter 插件的典型使用场景 - **教学与演示**:利用交互式控件和 Markdown 增强功能,制作动态教学材料或演示文稿。 - **数据探索**:通过代码补全、可视化插件和性能监控,提升数据科学任务的效率。 - **协作开发**:使用版本控制插件和团队共享功能,实现多人协作开发 Notebook。 - **工程化整合**:将 Jupyter 开发的原型代码迁移至 PyCharm 等 IDE 进行工程化部署。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值