自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

阿兵-AI医疗的专栏

从事医疗行业,专注图像处理、图形处理、人工智能; VTK交流群:678462859;

原创 1.1基础之可视化TensorFlow
原力计划

可视化是认知程序的最直观方式。 基本概念   TensorBoard是TensorFlow自带的一个强大的可视化工具,也是一个web应用程序套件。TensorBoard目前只支持7种可视化,即SCALARS、 IMAGES、AUDIO、GRAPHS、DISTRIBUTIONS、HISTOGRAM...

2020-03-05 21:54:20 1478 3

原创 4.2图像分割之区域分裂与合并

区域分裂与合并   区域生长是从一组生长点开始的,另一种方法是在开始时将图像分割成一系列任意不相关的区域,然后将它们合并或者拆分以满足限制条件,这就是区域分裂与合并。通过分裂,可以将不同特征的区域分离开,而通过合并,可以将相同特征的区域合并起来。 (1) 分裂   令R表...

2018-08-05 15:20:34 7234 3

原创 OpenGL学习系列导航

简介   OpenGL学习系列是《计算机图形学(第四版)》、《OpenGL编程指南(原书第8版)》、《C++ GUI Qt4编程(第二版)》以及网络资源的学习笔记。主要内容是在Qt5.6.x上学习OpenGL,不仅编程示例,同时学习理论知识。为了避免Visual Studio有点麻烦的环境配置,...

2017-12-17 11:42:00 696 0

原创 应用篇之线程基础
原力计划

基本概念   理解线程是至关重要的,因为每个进程至少都有一个线程。我们在讨论了进程实际上有两个组成部分:一个进程内核对象和一个地址空间。类似地,线程也有两个组成部分: 一个是线程的内核对象,操作系统用它管理线程。系统还用内核对象来存放线程统计信息的地方。 一个线程栈,用于维护线程执行时所需的所有...

2020-04-30 22:52:00 39 0

原创 DLL系列5.延迟载入DLL

基本概念   为了让DLL更易于使用, Microsoft Visual C++提供了一个很棒的特性,即延迟载入DLL。一个延迟载入的DLL是隐式链接的,系统一开始不会将该DLL载入,只有当我们的代码试图去引用DLL中包含的一个符号时,系统才会实际载入该DLL。延迟载入DLL在下列情况下非常有用。...

2020-04-30 22:40:17 53 0

原创 DLL系列6.函数转发器

基本概念   函数转发器(function forwarder)是DLL输出段中的一个条目,用来将一个函数调用转发到另一个DLL中的另一个函数。例如,如果用Visual C++的DumpBin工具来查看Windows的Kernel32.dll,那么我们会看到类似下面的输出: C:\Windows\...

2020-04-30 22:33:50 39 0

原创 应用篇之extern“C”
原力计划

基本概念   C++的项目源码中,经常会看到下面的代码: #ifdef __cplusplus extern "C" { #endif /*...*/ #ifdef __cplusplus } #endif   这里重点介绍extern “C”。在介绍extern &...

2020-03-05 20:43:43 71 0

原创 应用篇之dll lib pdb和头文件

建立一个真正的工程时,一般我们都会用到第三库或者自己建的库。这时候我们需要配置用到的头文件、lib以及dll。另外我们建立自己的静态库或者动态库时,会生成lib甚至dll。它们是什么,有什么作用, 基本概念   h头文件是编译时必须的,lib是链接时需要的,dll是运行时需要的。 h头文件   ...

2020-03-05 20:37:46 80 0

原创 Phong光照模型

基本概念   什么是光照模型?根据光学物理中的有关规律,计算出物体表面上任何一点投向观察者眼中的光的亮度大小和色彩组成的公式,从而在显示器上生成所显示的真实感图形。 简单光照模型假设物体不透明,那么物体表面呈现的颜色仅由其反射光决定。反射光由环境反射、漫反射和镜面反射。 所以Phong光照模型的...

2020-03-05 20:33:45 122 0

原创 2.6CNN实战之人脸关键点识别

之前做一个医学图像特征点标注的项目,就是先从人脸关键点识别开始入门。 基本概念   这是Kagge上一个比赛:Facial Keypoints Detection,我们这里使用CNN。大体内容如下图,识别人脸的15个关键点,每个关键点用x和y表示,所以神经网络的输出个数是30。 'le...

2020-02-23 20:10:48 157 0

原创 4.模型评估之ROC和AUC

基本概念         ROC全称是“受试者工作特征”(Receiver Operating Characteristic)曲线。ROC曲线的纵轴是“真正率”(True Positive Rate, TPR),横轴是...

2020-02-08 11:39:40 143 0

原创 4.特征选择

基本概念         对当前学习任务有用的特征称为“相关特征”(relevant feature);没有用的特征称为“无关特征”(irrelevant feature)。从给定的特征集合中选择出相关特征子集的过程,...

2020-02-07 10:39:47 129 0

原创 1.决策树

基本概念         决策树(Decision Tree)是一种用来分类和回归的无参监督学习方法。其目的是创建一种模型从数据特征中学习简单的决策规则来预测一个目标变量的值。顾名思义,决策树是基于树结构进行决策的。决...

2020-02-06 14:17:43 155 0

原创 5.实战之参数调优

基本概念         在构建模型时,调参(超参数)是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?一般可以通过交叉验证的方法。什么是交叉验证?我K-折交叉验证为例。当...

2020-02-05 14:06:52 58 0

原创 图像分割之大津法Otsu

基本概念         大津法(简称Otsu)由1979年由日本学者大津提出的,是一种自适应阈值确定的方法,相关文献链接。它是根据图像的灰度特性, 将图像分为前景和背景两个部分,当取最佳阈值时,二者之间的方差应该是...

2020-02-04 13:15:40 307 0

原创 3.样条曲线之NURBS

基本概念         有理函数是两个多项式之比。因此,有理样条(rational spline)是两个样条函数之比。例如,有理B样条曲线可以使用向量描述为:     &nb...

2020-02-04 13:07:45 214 0

原创 3.样条曲线之B样条曲线

B样条曲线         B样条是使用更广泛的逼近样条类。B样条有两个贝塞尔样条所不具备的优点:1、B样条多项式次数可独立于控制点数目(有一定限制);2、B样条允许局部控制曲线或曲面。缺点是B样条比贝塞尔样条更复杂。...

2020-02-04 12:23:47 299 0

原创 3.多边形曲线简化之Douglas-Peucker算法

Douglas-Peucker算法         根据具体情况,减少表示多边形曲线的点,可以减少内存,同时对曲线进行操作的时间。这里介绍经典的Douglas–Peucker算法,相关文献:Algorithms fo...

2020-02-03 14:38:14 396 0

原创 Effective C++之9.杂项讨论

条款53:不要轻忽编译器的警告 严肃对待编译器发出的警告信息。努力在你的编译器的最高警告级别下争取“无任何警告”的荣誉。不要过度依赖编译器的报警能力,因为不同的编译器对待事件2地态度并不相同。一旦移植到另一个编译器上,你原本依赖的警告信息有可能消失。 class B { public: v...

2020-01-31 19:34:44 57 0

原创 Effective C++之2.构造析构赋值运算

条款05:了解C++默默编写并调用哪些函数 编译器可以暗自为class创建default构造函数、copy构造函数、copy assignment操作符,以及析构函数。 条款06:如不想使用编译器自动生成的函数,就应该明确拒绝 为了驳回编译器暗自提供的机能,可将相应的成员函数声明为private并...

2020-01-31 15:53:16 57 0

原创 Effective C++之1.让自己习惯C++

条款01:视C++为一个语言联邦 C++高效编程守则视状况而变化,取决于你使用C++哪一部分。C、Object-Oriented C++、Template C++和STL。 条款02:尽量以const,enum,inline替换#define 对于单纯常量,最好以const对象或enums替换#d...

2020-01-31 15:51:21 40 0

原创 应用篇之DLL的静态调用和动态调用

区别静态调用(static call)和动态调用(dynamic call)。 静态调用         静态调用,即 Load-time Dynamic Linking。正如我们常用的配置方式,同时需要头文件、LI...

2020-01-31 15:44:42 115 0

原创 0.算法

什么是算法         在学习算法之前,先弄清楚算法是什么,能做什么。刚开始我也迷惑《算法导论》或者《数据结构与算法》中算法与图像算法工程师、AI算法工程师中算法的关系。后来才能明白前者是通用类算法,或者基础类算法...

2020-01-31 15:10:49 54 0

原创 1.算法设计方法之穷举法

基本概念         穷举法(穷举搜索法、枚举法, Brute Force)是一种在有限的解空间(解空间至少在理论上是有限的)内按照一定的策略进行查找的思想。穷举法的基本思想就是以下两个步骤: 确定问题的解(状态...

2020-01-31 15:08:14 125 0

原创 算法问题之线性规划(单纯形算法)

与网上大多数单纯形算法不同,本文基本遵循《算法导论》这本书的内容。 基本概念         在给定有限资源和竞争约束条件下,很多问题都可以表述为最大化或最小化某个目标。如果可以把目标指定为某些变量的一个线性函...

2020-01-31 15:03:12 118 0

原创 2.0树

树         树(Tree)是n(n>=0)个结点的有限集。n=0时 称为空树。在任意一棵非空树上:(1)有且仅有一个特定的称为根(root)的结点;(2)当n>1时,其余结点可分为m(m>0)...

2020-01-29 16:04:51 105 0

原创 1.4哈希表HashTable

基本概念         哈希表由键和值组成,就是Pyhthon里面的字典Dict。C++11加入unordered_map了,其相当于Java中的HashMap。而hash_map属于非标准容器。 示例演示 &...

2020-01-29 16:00:49 57 0

原创 1.3串

串         串(string)是由零个或多个字符组成的有限序列,又名字符串。 模式匹配         子串的定位操作通常称作串的...

2020-01-29 15:58:57 36 0

原创 1.2队列

基本概念          队列是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。示意图如下: 示例演示        &nb...

2020-01-29 15:53:42 50 0

原创 1.1栈

一、栈          栈(stack)是限定仅在表尾进行插入和删除操作的线性表。软件的撤销(undo)功能,就是用栈来实现的。栈的插入操作(进栈)和删除操作(出栈),如下图所示。 栈的应用  ...

2020-01-29 15:51:16 41 0

原创 1.0线性表之链表

基本概念         链表有单链表和双链表,二者区别如下: 示例演示         这里以领扣的206. 反转链表理解链表。 /*...

2020-01-29 15:48:12 40 0

原创 1.0线性表

一、基本概念          线性表是零个或多个数据元素的有限序列。数学表达如下图所示: 二、详细分析 1、顺序存储结构        &nbs...

2020-01-29 15:46:03 53 0

原创 0.数据结构概述

本系列是《大话数据结构》的笔记,以及LeetCode练习一些总结。 基本概念         数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。大学学习谭浩强C语言时,...

2020-01-29 15:41:09 121 0

原创 《联盟》读书笔记—如何选择一家好公司

《联盟》         第一次听到这本书的内容时,觉得很有同感。因为里面提到公司是团队不是家庭,雇主和员工互惠合作。员工让公司更有价值,同时公司也要让员工更有价值,有更好的待遇和职业发展。   ...

2020-01-29 12:38:05 74 0

原创 损失函数之交叉熵

基本概念         分类问题希望解决的是将不同的样本分到事先定义好的类别中。对于单个输出节点的神经网络,当这个节点的输出越接近0时,这个样本越有可能是不合格的;反之如果输出越接近1,则这个样本越有可能是合格的。然...

2019-12-01 13:59:12 48 0

原创 神经网络优化之正则化

正则化         为了避免过拟合问题,一个常用的方法是正则化(regularization)。正则化的思想就是在损失函数中加入刻画模型复杂的指标。假设用于刻画模型在训练数据上表现的损失函数为J(θ),那么在优化时...

2019-12-01 13:32:38 54 0

原创 神经网络优化之优化器

基本概念         梯度下降算法主要用于优化单个参数的取值,而反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络模型在训练数据上的损失函数尽可能小。需要注意的是,梯度下降法并不能保证被优...

2019-12-01 13:22:24 76 0

原创 神经网络优化之学习率

基本概念         在训练神经网络时,需要设置学习率(learning rate)控制参数更新的速度。学习率决定了参数每次更新的幅度,如果幅度过大,那么可能导致参数在极优值的两侧来回移动。相反,当学习率过小时,虽...

2019-12-01 13:18:37 110 0

原创 激活函数

基本概念         激活函数(Activation Function)运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经网络。神经网络之所以能够解决非线性问题(如语音、图像识别),本质上就是激活函...

2019-12-01 13:15:21 65 0

原创 如何学习VTK

因工作需要,开始从零开始学习VTK。现在分享一下学习心得,仅针对刚刚开始学习VTK的人,避免像我一样走一些弯路。 第一步:了解VTK 可以看水灵的视频(应该水灵上研究生的时候录制),跟着视频学习,保证又快又轻松。看完视频,能够自己建立工程,编写代码,对VTK有初步了解。在此感谢水灵,自行...

2019-11-19 09:16:43 3133 32

提示
确定要删除当前文章?
取消 删除