是时候总结一波Python环境搭建问题了

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入


1.Python使用定位及IDE

个人的当前角色仍然是以数据分析+算法为主,兼顾工程实现。所以个人习惯的IDE组合为JupyterLab+VSCode+Pycharm,其中JupyterLab当然是数据探索分析的主用环境,VSCode则用作查看源码和文档编辑,而一旦确定了算法流程需要输出正式Python代码文件时,则会使用Pycharm。这个顺序既是使用频率由大到小,也是IDE体积和轻便性由简到繁。


注:Pycharm区分Pro和Community两个版本,其中前者功能更为健全和强大,但需付费使用,而后者则是免费的社区版,个人觉得Community版已经足够好用。另外,很多数据从业者推崇的Anaconda环境,其实个人并不以为然,它除了预安装Python和部分第三方库之外,并无实质性优势。

 

2.Python安装

Python安装本无太多可言,从官网下载相应版本即可,目前最新版本是3.9.1,且按照Python最新计划后续每年将会有一个大的版本迭代,也就是说2021年将推出3.10,2022年就是3.11。但实际上,个人目前比较喜欢的版本还是3.7或3.8.Python由于大部分第三方库需要另行安装,所以其体积非常小,仅有20+M。这里非常值得注意的一个问题是:Python默认情况下安装区分用户,此时安装路径会自动定位到C盘用户appdata目录下,而且当该用户不是管理员权限时,还不能随意更改安装路径。此时有效的解决办法是勾选“install for all users”选项即可,相应的安装目录则会定位到大多数软件默认的program files目录下。

 

 

Python安装完毕后,如果不安装一些第三方库,那么此时的Python其实是很弱爆的,所以自然第二个问题就是如何高效安装第三方库的问题。对此,简单总结如下:

1.pip工具安装问题

正常情况下,安装Python会默认一并安装pip工具,并加入到系统环境变量中,进而可以通过pip工具管理第三方库。安装期间勾选如下:

 

 

如果因为各种原因,系统不能使用pip命令时,系统提示pip不是内部或外部命令,则仅仅是因为pip应用程序未加入到环境变量的原因。

 


解决这一问题的方法很简单,找到Python安装目录下的pip.exe执行路径,而后将其加入到环境变量即可。

2.pip安装第三方库问题

pip是用于管理第三方库的工具,常用操作包括install、uninstall和upgrade三种,其中install又可区分在线下载安装和离线提供wheel文件安装。

  • 在线安装。在线安装非常简单,但限于下载速度一般需要配置pip国内下载源,只需在用户目录下创建pip文件夹,而后在文件夹内创建pip.ini文件,并写入如下2行代码即可(这里是以更改清华大学源为例)
[global] 

index-url = https://pypi.tuna.tsinghua.edu.cn/simple
  • 离线安装。在线安装非常便捷,但对于某些保密或者离线环境不便联网时,更有效的方法是离线安装,此时可先在一台联网机器上准备好需要安装的包,而后执行如下3条命令即可,其中前2条命令用于在联网机器上准备好离线安装文件,第3条命令用于在目标机器上执行离线安装。
1.导出已安装pip列表:pip freeze >requirements.txt
2.根据列表下载安装文件 pip download -d packages -r requirements.txt
3.根据文件和列表离线安装 pip install --no-index --find-links=packages -r requirements.txt

3.Jupyter Lab配置

一般情况下,在安装Python第三方库时,肯定就会将Jupyterlab库一并安装。默认情况下,安装完毕后可直接在cmd命令下键入jupyter lab启动浏览器,并搭建ipython运行环境。这里仍然需要注意3个问题:
1.Jupyter lab之前空格问题。这是一个很小的细节,其中在pip install时,jupyterlab连写,合起来表示一个包名,而在键入jupyter命令启动浏览器时则需分开写,其中jupyter代表命令(背后对应的是jupyter.exe),lab代表参数。除了lab作为参数外,当然另一个可选的参数就是notebook了

2.默认情况下,只要安装jupyter lab正常,那么cmd中键入jupyter lab便可直接启动浏览器搭建环境,但也有不正常的情况,如同pip命令不识别一样,当遇到jupyter命令不识别时,仍然要想到的是所在路径未添加到环境变量中。所以解决办法如同前面pip命令一致。


3.修改jupyter lab默认工作目录。一般而言,jupyter lab启动后默认工作目录是安装路径,但这可能是大多数人都不希望的场景,所以自然需要更改。更改的方法是在cmd中执行如下命令:

 

jupyter lab --generate-config

 

然后打开新生成的配置文件,找到c.ServerApp.notebook_dir参数,修改成目标路径地址即可,例如图中修改为D盘根目录。

 

4.VSCode配置

VSCode是微软推出的一款代码编辑器,更本质的说是文本编辑器,类似的应用还有Sublime、Notepad++等,虽然功能大同小异,但VSCode由于有微软强大的背书,以及越来越多的插架加成,目前正逐渐表现出愈发强大的竞争力。

个人一般习惯用其作为查看代码的软件,灵活使用ctrl+B快捷键查找引用还是非常快捷的,另外也集成了Git和debug功能。当然,要想使其真的好用,那么其实还需要安装一些插件才行。联网情况下,只需点击左侧扩展菜单,即可方便的查找指定扩展应用并安装,例如汉化包(Chinese)、代码美化工具(beautify)以及Python语言相关,这些几乎是必备的插件。


当然,也要考虑离线安装插件的需求,VSCode自然也考虑到了这一场景。前往如下网站(VSCode插件市场:https://marketplace.visualstudio.com/),输入插件名,点击前往详情页,即可在右侧点击下载扩展。

 

而后,与使用pip工具安装Python第三方库类似,可直接使用如下命令离线安装VScode扩展。其中xxx表示前面准备好的扩展名,且code指令能识别的前提是要求vscode.exe路径加入到环境变量中。

code --install-extension xxx

当然,还有Pycharm的配置,相比Python、Jupyter和VSCode而言,Pycharm的安装其实已经高度集成,无需过多配置。但值得深入研究的是Pycharm的虚拟开发环境,这也是Pycharm的一大利器,这里就不再展开了。

已标记关键词 清除标记
相关推荐
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页