计算机毕设:使用特征因子分析和逻辑回归和决策树构建手机价格预测模型(博文底部vx获取)

本文通过分析手机定价数据集,展示了从数据预处理到模型构建的过程,包括缺失值检查、可视化分析(如价格区间分布和特征与价格的关系),并比较了逻辑回归和决策树模型的性能。最终决策树模型在预测准确性上优于逻辑回归,准确率高达0.87。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.读取数据与可视化

1.1 读数据表

手机定价数据集共有2000个样本,每个样本有21个特征,该数据集包含了一系列手机的型号,及其各种配置信息和价格范围,其中价格范围有四个取值,0表示廉价,1表示价格一般,2表示价格昂贵,3表示价格十分昂贵。本案例将利用机器学习算法来预测一个特定配置手机的售价范围。

battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores pc px_height px_width ram sc_h sc_w talk_time three_g touch_screen wifi price_range
842 0 2.2 0 1 0 7 0.6 188 2 2 20 756 2549 9 7 19 0 0 1 1
1021 1 0.5 1 0 1 53 0.7 136 3 6 905 1988 2631 17 3 7 1 1 0 2
563 1 0.5 1 2 1 41 0.9 145 5 6 1263 1716 2603 11 2 9 1 1 0 2
615 1 2.5 0 0 0 10 0.8 131 6 9 1216 1786 2769 16 8 11 1 0 0 2
1821 1 1.2 0 13 1 44 0.6 141 2 14 1208 1212 1411 8 2 15 1 1 0 1

1.2 缺失值检测

首先,检查数据集中的数据是否存在缺失情况。

数据缺失值情况:

</
列名 缺失值数量
battery_power 0
blue 0
clock_speed 0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值