2、Ubuntu 系统用户与组管理全攻略

Ubuntu 系统用户与组管理全攻略

1. 引言

在 Ubuntu 服务器的使用过程中,用户和组的管理是非常重要的一部分。我们需要了解如何添加新用户、更新现有用户信息、设置用户权限,同时也需要掌握安全的用户访问和用户配置文件保护方法。接下来,我们将详细介绍一系列用户与组管理的操作。

2. 创建用户账户

在安装 Ubuntu 时,会在服务器上添加一个主用户账户;如果使用云镜像,会预装默认用户。但有时我们需要创建更多受限的用户账户。
- 准备工作 :需要超级用户或 root 权限。
- 操作步骤
1. 在 shell 中输入以下命令添加新用户:

$ sudo adduser bob
2. 输入密码以完成具有 sudo 权限的命令。
3. 为新用户输入密码。
4. 确认新用户的密码。
5. 输入新用户的全名和其他信息,可按 Enter 键跳过。
6. 输入 Y 确认信息正确。
7. 可通过查看 `/etc/passwd` 文件确认新用户是否添加成功。
  • 工作原理 :在 Linux 系统中, adduser 是一个高级命令,用于快速向系统添加新用户。由于 adduser 需要 root 权限,所以要使用 sudo 命令。它会完成以下操作:
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值