路径规划算法的研究一直是人工智能领域的重要研究方向之一。A算法作为一种经典的路径规划算法,在机器人、自动驾驶等领域得到了广泛应用。本文将介绍A算法和改进A*算法,并通过MATLAB实现代码,以便读者更好地了解和使用这两种算法。
- A*算法
A算法是一种基于启发式搜索的最短路径寻求算法。它是由Peter Hart、Nils Nilsson和Bertram Raphael在1968年发明的。
A算法采用了估价函数f(n)=g(n)+h(n),其中g(n)表示从起点开始到节点n的实际代价,h(n)表示从节点n到目标节点的预测代价。估价函数f(n)的值越小,则节点n的优先级越高,就会被先选中探索。因此,A*算法会优先选择离目标节点较近、代价相对较小的节点进行搜索,以逐步接近目标。
- 改进A*算法
为了进一步提高A算法的效率和准确性,研究者们不断对其进行改进。其中,常见的改进方式有权重A算法、实时A算法、分层A算法等。在此,我们简要介绍一下改进A算法中的一种——迭代加深A算法(IDA*算法)。
IDA算法采用的是迭代加深搜索策略,即从深度最小的节点开始扩展,每次扩展时限制搜索深度。如果当前深度限制下无解,则增加搜索深度;否则,减少深度限制。这样一来