使用OpenMP进行多GPU的线程处理实例
在这个例子中,我们将使用OpenMP框架来实现CPU端的多GPU线程处理。首先,我们需要在主机上安装CUDA SDK,并添加相应的库文件到链接器路径。
接下来,我们创建一个基于OpenMP的C++程序,其中包括了CUDA的头文件和库文件。我们定义了一个用于并行处理的函数,在这个函数中,我们使用CUDA的API初始化多个GPU设备,并为每个设备开辟相应的内存空间,以便在后续的计算中使用。然后,我们通过OpenMP的指令让每个线程对应不同的GPU设备,并将数据分配给每个线程所对应的设备进行计算。最后,我们通过调用CUDA API的相应函数完成内存空间的释放。
以下是完整的代码实现:
#include <iostream>
#include <cstdlib>
#include <omp.h>
#include <cuda_runtime.h>
void processWithCUDA(int* data, int size, int deviceId) {
cudaSetDevice(deviceId);
int* d_data;
cudaMalloc(&d_data, size * sizeof(int));
cudaMemcpy(d_data, data, size * sizeof(int), cudaMemcpyHostToDevice);
// 执行CUDA核心计算