数学不等式、特殊函数及相关引理与偏微分方程解的探讨
1. 庞加莱(Poincaré)和阿冈(Agmon)不等式
1.1 庞加莱不等式
对于任意 ( w \in H^1(0, 1) ),有如下不等式成立:
- ( \int_{0}^{1} w^2(x) dx \leq 2w^2(1) + 4\int_{0}^{1} w_x^2(x) dx )
- ( \int_{0}^{1} w^2(x) dx \leq 2w^2(0) + 4\int_{0}^{1} w_x^2(x) dx )
其更精确的形式为:
- ( \int_{0}^{1} (w(x) - w(1))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx )
- ( \int_{0}^{1} (w(x) - w(0))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx )
这些精确形式有时被称为 “维尔廷格(Wirtinger)不等式的变体”,其证明比前两个不等式的证明复杂得多。
证明过程如下:
( \int_{0}^{1} w^2 dx = xw^2| {0}^{1} - 2\int {0}^{1} xww_x dx = w^2(1) - 2\int_{0}^{1} xww_x dx \leq w^2(1) + \frac{1}{2}\int_{0}^{1} w^2dx + 2\int_{0}^{1} x^2w_x^2 dx )
两边同时减去 ( \frac{1}{2}\int_{0}^{1} w^2d
订阅专栏 解锁全文
90

被折叠的 条评论
为什么被折叠?



