22、数学不等式、特殊函数及相关引理与偏微分方程解的探讨

数学不等式、特殊函数及相关引理与偏微分方程解的探讨

1. 庞加莱(Poincaré)和阿冈(Agmon)不等式

1.1 庞加莱不等式

对于任意 ( w \in H^1(0, 1) ),有如下不等式成立:
- ( \int_{0}^{1} w^2(x) dx \leq 2w^2(1) + 4\int_{0}^{1} w_x^2(x) dx )
- ( \int_{0}^{1} w^2(x) dx \leq 2w^2(0) + 4\int_{0}^{1} w_x^2(x) dx )

其更精确的形式为:
- ( \int_{0}^{1} (w(x) - w(1))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx )
- ( \int_{0}^{1} (w(x) - w(0))^2 dx \leq \frac{4}{\pi^2}\int_{0}^{1} w_x^2(x) dx )

这些精确形式有时被称为 “维尔廷格(Wirtinger)不等式的变体”,其证明比前两个不等式的证明复杂得多。

证明过程如下:
( \int_{0}^{1} w^2 dx = xw^2| {0}^{1} - 2\int {0}^{1} xww_x dx = w^2(1) - 2\int_{0}^{1} xww_x dx \leq w^2(1) + \frac{1}{2}\int_{0}^{1} w^2dx + 2\int_{0}^{1} x^2w_x^2 dx )
两边同时减去 ( \frac{1}{2}\int_{0}^{1} w^2d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值