1、当Ka = 1.6π时,表达式e[iKa]的值等同于在范围−π ≤ Ka ≤ π内的哪个Ka值所计算出的值?
由于e[iKa]具有周期性,周期为2π。
- 6π - 2π = -0.4π,
- -0.4π在 -π ≤ Ka ≤ π范围内,
所以等同于在Ka = -0.4π时计算出的值。
2、已知固态氩的温度数据和对应的热容数据,将这些数据整合到脚本中,进行线性回归拟合(强制拟合直线的截距为0),计算斜率和德拜温度,并绘制数据点和拟合直线。温度数据TData=[0.13,0.33,0.60,0.89,1.14,1.45,1.65,2.03,2.30,2.56,2.92,3.41,3.57,3.99,4.12,4.59,5.04,5.26,5.39,6.13,6.29,7.07,7.09,7.20,7.47,7.87],热容数据CvData=[0.49,1.00,1.58,2.31,2.96,3.76,4.19,5.21,5.87,6.45,7.39,8.70,9.21,10.37,10.59,11.68,12.84,13.57,13.86,15.82,15.96,17.85,18.21,18.36,19.09,20.10]。德拜温度计算公式为θ = (233.78R/m)^(1/3) ,其中R = 8.3145 × 10³ mJ/(mol · K),斜率m根据公式m = ∑xiyi / ∑xi² 计算(这里xi和yi分别代表T³和CV的实验值对)。
要完成这个任务,可按以下步骤操作:
- 创建一个新的MATLAB脚本。
- 进行线性回归拟合,由于CV在T趋于0时趋于0,需强制拟合直线的截距为0。
- 计算斜率m,根据公式
$$
m = \frac{\sum x_i y_i}{\sum x_i^2}
$$
计算(这里 $x_i$ 和 $y_i$ 分别代表 $T^3$ 和 CV 的实验值对)。 - 利用公式
$$
\theta = \left(\frac{233.78 R}{m}\right)^{1/3}
$$
计算德拜温度,其中 $R = 8.3145 × 10^3 \, \text{mJ}/(\text{mol} \cdot \text{K})$。 - 绘制数据点和拟合直线。
以下是示例代码:
% 实验数据
TData = [0.13,0.33,0.60,0.89,1.14,1.45,1.65,2.03,2.30,2.56,2.92,3.41,3.57,3.99,4.12,4.59,5.04,5.26,5.39,6.13,6.29,7.07,7.09,7.20,7.47,7.87];
CvData = [0.49,1.00,1.58,2.31,2.96,3.76,4.19,5.21,5.87,6.45,7.39,8.70,9.21,10.37,10.59,11.68,12.84,13.57,13.86,15.82,15.96,17.85,18.21,18.36,19.09,20.10];
% 强制截距为0进行线性回归拟合
m = sum(TData .* CvData) / sum(TData.^2);
% 计算德拜温度
R = 8.3145e3;
theta = (233.78 * R / m)^(1/3);
% 输出结果
fprintf('斜率 m = %.4f mJ/K^4\n', m);
fprintf('德拜温度 theta = %.1f K\n', theta);
% 绘制数据点和拟合直线
figure;
plot(TData, CvData, 'o', 'DisplayName', 'Experiment');
hold on;
xfit = linspace(min(TData), max(TData), 100);
yfit = m * xfit;
plot(xfit, yfit, 'DisplayName', ['Debye T^3 Law (theta = ', num2str(theta), ' K)']);
hold off;
xlabel('T^3 (K^3)');
ylabel('Cv (mJ mol^-1 K^-1)');
legend;
grid on;
运行此脚本,就能完成拟合过程并绘制出数据点和拟合直线。
3、运行脚本thermal potential.m以绘制Lennard - Jones势、其四阶展开以及谐波近似的对比图。
要运行脚本 thermal potential.m
来绘制相应对比图,可按以下步骤操作:
- 打开 MATLAB 软件;
- 将脚本
thermal potential.m
复制到 MATLAB 的工作目录中; - 在 MATLAB 命令窗口输入
thermal_potential
,然后按回车键运行脚本; - 运行后,MATLAB 会绘制出对比图。
4、计算铝的费米能级、费米速度和费米温度。
铝的密度ρ<sub>Al</sub> = 2.70×10³ kg/m³,原子质量m<sub>Al</sub> = 6.98 u,1u≈1.66×10⁻²⁷ kg,价电子数为3。
电子密度n = N/V = ρ<sub>Al</sub>/m<sub>Al</sub> × 3 = 2.70×10³/(6.98×1.66×10⁻²⁷) × 3 ≈ 6.93×10²⁸ m⁻³。
费米能级ε<sub>F</sub> = (ħ²)/(2m)(3π²n)^(2/3) ≈ (1.055