Transformer数学推导——Q41 推导相对位置编码中键-查询偏移量的梯度传播路径

该问题归类到Transformer架构问题集——位置编码——相对位置编码。请参考LLM数学推导——Transformer架构问题集

在自然语言处理这片充满神秘与挑战的领域中,Transformer 模型凭借自注意力机制大放异彩,成为当之无愧的 “顶梁柱”。而相对位置编码作为 Transformer 架构中的关键一环,就像是赋予模型感知序列顺序的 “智慧之眼”。其中,键 - 查询偏移量的梯度传播路径更是如同模型训练过程中的 “神经网络”,承载着信息传递与参数优化的重任。今天,我们就深入剖析这一关键内容,揭开它的神秘面纱。

1. 相对位置编码背景介绍

在 Transformer 诞生初期,绝对位置编码是赋予模型位置信息的主要方式,它就像给每个位置都分配了一个独一无二的 “身份证号”。然而,这种方式在处理长序列时逐渐暴露出局限性,例如当序列长度增加,不同位置的编码可能会出现 “混淆”,导致模型难以准确捕捉位置之间的相对关系。

相对位置编码应运而生,它不再执着于每个位置的绝对身份,而是将目光聚焦于位置之间的相对距离和关系。这一转变,让模型在理解文本时,能够像人类一样,更关注元素之间的相对顺序和逻辑联系。比如在翻译一个复杂的长句时,相对位置编码能帮助模型更好地把握从句与主句、修饰词与中心词之间的位置关联,从而生成更准确、更自然的译文。

2. 相对位置编码基础原理

在 Transformer 的自注意力机制中,注意力分数的计算是模型理解输入序列的核心步骤。引入相对位置编码后,注意力分数 A_{ij} 的计算公式变为: A_{ij}=\frac{\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_j + b_{ij})/\sqrt{d_k})}{\sum_{k = 1}^{n}\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_k + b_{ik})/\sqrt{d_k})} 其中,\mathbf{q}_i 是查询向量,它就像一个 “搜索者”,在输入序列中寻找相关信息;\mathbf{k}_j 是键向量,充当着 “索引” 的角色,帮助查询向量定位信息;d_k 是键向量的维度;而 b_{ij} 就是键 - 查询偏移量对应的偏置项,它携带了位置 i 和 j 之间相对位置的关键信息。

这个公式就像是一个精密的 “信息处理器”,键 - 查询偏移量 b_{ij} 在其中起到了调节不同位置信息权重的作用。当模型计算注意力分数时,会根据 b_{ij} 的值,对不同位置的键向量与查询向量的交互结果进行调整,从而决定模型对每个位置的关注程度。例如,在处理一段故事文本时,对于描述关键情节的位置,合适的键 - 查询偏移量可以让模型给予更多的注意力,使模型更好地理解故事的发展脉络。

3. 键 - 查询偏移量的梯度传播路径推导

3.1 梯度的基本概念与重要性

在深度学习的世界里,梯度是模型训练的 “方向盘”,它指引着模型参数更新的方向。简单来说,梯度表示的是损失函数关于模型参数的导数,它反映了参数的微小变化会如何影响损失函数的值。对于相对位置编码中的键 - 查询偏移量,推导其梯度传播路径,就像是绘制一幅详细的 “导航地图”,帮助我们了解模型在训练过程中,如何根据损失反馈来调整与相对位置相关的参数,从而不断优化对位置信息的处理能力。

3.2 前向传播中的键 - 查询偏移量

在前向传播过程中,键 - 查询偏移量 b_{ij} 深度参与了注意力分数的计算。查询向量 \mathbf{q}_i 与键向量 \mathbf{k}_j 先进行点积运算,然后加上键 - 查询偏移量 b_{ij},经过缩放和 softmax 操作后,最终得到注意力分数 A_{ij}

这个过程就像一场复杂的 “信息筛选与加权” 仪式。键 - 查询偏移量 b_{ij} 根据位置之间的相对关系,为不同的键 - 查询对赋予不同的 “权重”,使得模型能够更加合理地分配注意力。例如,在处理一段新闻报道时,对于描述事件核心内容的位置,键 - 查询偏移量会给予较高的权重,让模型重点关注这些关键信息。

3.3 反向传播中的梯度计算

在反向传播阶段,我们从损失函数 L 开始,沿着计算图逆向推导梯度。假设损失函数 L 是关于注意力分数 A 的函数,首先计算损失函数关于注意力分数的梯度 \frac{\partial L}{\partial A_{ij}},这一步确定了损失对每个注意力分数的敏感程度。

接着,根据链式法则,计算注意力分数关于键 - 查询偏移量 b_{ij} 的梯度 \frac{\partial A_{ij}}{\partial b_{ij}}。对注意力分数公式 A_{ij}=\frac{\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_j + b_{ij})/\sqrt{d_k})}{\sum_{k = 1}^{n}\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_k + b_{ik})/\sqrt{d_k})} 

求关于 b_{ij} 的导数: \begin{aligned} \frac{\partial A_{ij}}{\partial b_{ij}}&=\frac{\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_j + b_{ij})/\sqrt{d_k})}{\sum_{k = 1}^{n}\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_k + b_{ik})/\sqrt{d_k})}\times(1 - \sum_{k = 1}^{n}\frac{\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_k + b_{ik})/\sqrt{d_k})}{\sum_{m = 1}^{n}\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_m + b_{im})/\sqrt{d_k})}\times\frac{\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_j + b_{ij})/\sqrt{d_k})}{\sum_{m = 1}^{n}\text{exp}((\mathbf{q}_i\cdot\mathbf{k}_m + b_{im})/\sqrt{d_k})})\\ &=A_{ij}(1 - \sum_{k = 1}^{n}A_{ik}A_{ij}) \end{aligned} 最后,根据链式法则,损失函数关于键 - 查询偏移量的梯度 \frac{\partial L}{\partial b_{ij}} 为: \frac{\partial L}{\partial b_{ij}}=\sum_{i = 1}^{n}\sum_{j = 1}^{n}\frac{\partial L}{\partial A_{ij}}\frac{\partial A_{ij}}{\partial b_{ij}} 这个梯度将沿着计算图反向传播,传递到与键 - 查询偏移量相关的参数上,指导这些参数的更新。整个过程就像一场精密的 “信号传递”,梯度作为信号,在计算图中不断传递,告诉模型哪些参数需要调整以及如何调整。

3.4 梯度传播对模型训练的影响

键 - 查询偏移量的梯度大小和方向直接影响着模型训练过程中相关参数的更新。如果梯度较大,说明当前的键 - 查询偏移量设置对损失函数的影响较大,模型需要对相关参数进行较大幅度的调整;反之,如果梯度较小,则表示当前设置相对合理,只需进行较小幅度的微调。

通过不断地沿着梯度传播路径更新参数,模型能够逐渐学习到更合适的键 - 查询偏移量表示,从而更好地捕捉序列中的相对位置关系。随着训练的推进,模型在各种自然语言处理任务中的性能也会不断提升,就像一个学习者在不断的练习和调整中,逐渐掌握更高效的学习方法。

4. LLM 中相对位置编码键 - 查询偏移量梯度传播的实际应用案例

4.1 BERT 在文本分类中的应用

在新闻文本分类任务中,BERT 模型利用相对位置编码键 - 查询偏移量的梯度传播来优化对文本中关键信息位置的捕捉。例如,在判断一篇新闻是关于 “科技” 还是 “娱乐” 类别时,新闻内容中不同关键词和句子的相对位置关系至关重要。

在训练过程中,当模型预测错误时,损失函数产生的梯度会沿着键 - 查询偏移量的传播路径反向传递。这会促使模型调整相对位置编码中与这些关键词和句子位置相关的参数,使得模型在后续的预测中,能够更加关注对分类起关键作用的位置信息。比如,当遇到包含 “芯片研发”“人工智能” 等科技相关词汇的句子时,模型通过梯度更新,能够给予这些位置更高的注意力权重,从而提高分类的准确性。

4.2 T5 在文本生成中的应用

T5 模型在进行文本生成任务,如生成小说情节或学术论文摘要时,键 - 查询偏移量的梯度传播发挥着重要作用。在生成过程中,模型需要根据前文的内容和结构,合理安排后续生成内容的逻辑和顺序。

以生成小说情节为例,前文描述了主角在一个神秘森林中的遭遇,后续情节需要与之连贯且合理。当模型生成的情节与预期不符时,损失函数计算出的梯度会反馈到相对位置编码的键 - 查询偏移量相关参数上。模型通过调整这些参数,能够更好地捕捉前文关键情节的位置信息,并在生成后续内容时,根据相对位置关系生成更符合逻辑的情节,使整个故事更加连贯、吸引人。

4.3 GPT - 3 在问答系统中的应用

在问答系统中,GPT - 3 需要准确理解用户问题与答案之间的位置关系和语义关联。例如,当用户提问 “如何提高机器学习模型的泛化能力?” 时,模型需要从大量的知识储备中找到相关答案,并组织成合理的回答。

在训练阶段,当模型给出的答案不准确时,损失函数产生的梯度会沿着键 - 查询偏移量的梯度传播路径,对相对位置编码的参数进行调整。通过不断优化,模型能够更精准地捕捉问题中关键词的位置信息,并在检索答案时,根据问题与答案的相对位置关系,筛选出更相关、更准确的内容进行回答,从而提升问答系统的质量和用户满意度。

5. 代码示例:动手实践理解梯度传播

import torch
import torch.nn as nn

# 定义相对位置编码类
class RelativePositionEncoding(nn.Module):
    def __init__(self, d_model):
        super(RelativePositionEncoding, self).__init__()
        self.d_model = d_model

    def forward(self, q, k):
        batch_size, seq_len_q, _ = q.size()
        batch_size, seq_len_k, _ = k.size()
        # 计算相对位置
        relative_position = torch.arange(seq_len_q).unsqueeze(0) - torch.arange(seq_len_k).unsqueeze(0).T
        # 相对位置嵌入
        relative_position_embedding = nn.Embedding(num_embeddings=2 * seq_len_q - 1, embedding_dim=self.d_model)
        relative_position = relative_position + seq_len_q - 1
        bias = relative_position_embedding(relative_position)
        scores = torch.matmul(q, k.transpose(-2, -1)) / (self.d_model ** 0.5)
        scores = scores + bias
        attention = torch.softmax(scores, dim=-1)
        return attention

# 定义简单模型
class SimpleModel(nn.Module):
    def __init__(self, d_model):
        super(SimpleModel, self).__init__()
        self.relative_position_encoding = RelativePositionEncoding(d_model)

    def forward(self, q, k):
        return self.relative_position_encoding(q, k)

# 实例化模型
d_model = 64
model = SimpleModel(d_model)

# 生成模拟数据
batch_size = 2
seq_len_q = 5
seq_len_k = 5
q = torch.randn(batch_size, seq_len_q, d_model, requires_grad=True)
k = torch.randn(batch_size, seq_len_k, d_model, requires_grad=True)

# 前向传播
output = model(q, k)

# 定义损失函数
loss = output.sum()

# 反向传播
loss.backward()

# 查看键-查询偏移量相关参数的梯度
for name, param in model.named_parameters():
    if param.grad is not None:
        print(f"{name} gradient: {param.grad}")

5.1 代码解读

  • 相对位置编码类(RelativePositionEncoding
    • __init__ 方法初始化模型,接收 d_model 参数,用于指定相对位置嵌入的维度。
    • forward 方法是核心计算部分。首先获取查询向量 q 和键向量 k 的尺寸信息;接着通过计算得到相对位置矩阵 relative_position,它表示查询位置与键位置之间的相对距离;然后创建相对位置嵌入层 relative_position_embedding,将相对位置映射到指定维度的向量空间;对相对位置进行调整后,获取对应的偏置 bias;最后将偏置加入到查询与键的点积结果中,经过缩放和 softmax 操作,得到注意力分数。
  • 简单模型类(SimpleModel:将相对位置编码模块集成到模型中,方便进行整体的前向传播计算。
  • 数据生成与前向传播:生成具有梯度需求的模拟查询向量 q 和键向量 k,通过模型进行前向传播,得到注意力分数 output
  • 损失计算与反向传播:定义简单的损失函数(这里取注意力分数的总和),进行反向传播,计算出损失函数关于模型参数的梯度。
  • 梯度查看:遍历模型的参数,打印出具有梯度的参数及其梯度值,通过这些输出,我们可以直观地观察到键 - 查询偏移量相关参数在梯度传播过程中得到的梯度信息,帮助我们理解梯度是如何在模型中传递和影响参数的。

6. 总结:探索梯度传播的意义与展望

通过对相对位置编码中键 - 查询偏移量梯度传播路径的深入推导、丰富的实际应用案例分析以及详细的代码实践,我们全面且深入地理解了这一关键机制在 Transformer 模型训练中的重要作用。它不仅是模型优化相对位置编码参数的核心路径,更是提升模型在各类自然语言处理任务中性能的关键因素。

在未来,随着自然语言处理技术的不断发展,对键 - 查询偏移量梯度传播的研究将不断深入。一方面,我们可以探索如何进一步优化梯度传播路径,使其更加高效,从而加速模型的训练过程;另一方面,结合更多的创新技术,如自适应梯度调整策略、与其他位置编码方式的融合等,挖掘相对位置编码的更大潜力。相信在不断的探索和实践中,我们将推动自然语言处理技术迈向更高的发展阶段,让 Transformer 模型在处理自然语言时展现出更强大的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值