Transformer——Q83 分析FFN与注意力层的参数分配最优比例(通过帕累托前沿)

该问题归类到Transformer架构问题集——前馈网络——参数高效设计。请参考LLM数学推导——Transformer架构问题集

1. 引言

在大语言模型(LLM)架构设计领域,前馈神经网络(FFN)与注意力层宛如紧密协作的 “黄金搭档”,共同决定着模型对语义的理解与生成能力。然而,如何科学地分配二者参数,实现性能与效率的完美平衡,始终是研究者们探索的核心问题。帕累托前沿理论凭借严谨的数学优化逻辑,为寻找 FFN 与注意力层参数的最佳组合开辟了科学路径,对推动 LLM 架构优化与任务适配具有重大意义。

2. FFN 与注意力层基础

2.1 FFN 与注意力层的功能

FFN 承担着对输入特征深度加工的重任。以输入向量\mathbf{x} \in \mathbb{R}^n为例,经过第一层线性变换\mathbf{z}_1 = \mathbf{W}_1\mathbf{x} + \mathbf{b}_1,再通过激活函数\mathbf{h}_1 = \sigma(\mathbf{z}_1) ,其中\mathbf{W}_1 \in \mathbb{R}^{m \times n}是权重矩阵,\mathbf{b}_1 \in \mathbb{R}^m是偏置向量,\sigma如 ReLU 函数。通过多层这样的计算,实现对特征的逐步抽象与增强。

多头注意力机制则像模型的 “智能雷达”,能够动态聚焦关键语义信息。对于输入序列\mathbf{X} \in \mathbb{R}^{L \times d} ,先经线性变换得到查询向量\mathbf{Q} = \mathbf{X}\mathbf{W}_Q、键向量\mathbf{K} = \mathbf{X}\mathbf{W}_K和值向量\mathbf{V} = \mathbf{X}\mathbf{W}_V ,再计算注意力分数\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}})\mathbf{V} ,完成对不同位置信息的加权聚合 。

2.2 参数分配对模型的影响

FFN 参数过多会显著增加计算量,甚至引发过拟合问题。从 VC 维理论角度来看,过多的参数会增大模型容量,导致模型在训练数据上过度学习,从而降低在测试数据上的泛化能力;而注意力层参数占比过高,又可能削弱模型的特征变换与非线性表达能力。因此,精准确定二者参数的最优分配比例,是提升 LLM 综合性能的关键所在。

3. 帕累托前沿理论基础

3.1 帕累托前沿的定义

在多目标优化问题中,假设存在m个目标函数f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x}),其中\mathbf{x}为决策变量向量。若存在解\mathbf{x}^*,满足不存在其他解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨顿

唵嘛呢叭咪吽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值