该问题归类到Transformer架构问题集——前馈网络——参数高效设计。请参考LLM数学推导——Transformer架构问题集。
1. 引言
在大语言模型(LLM)架构设计领域,前馈神经网络(FFN)与注意力层宛如紧密协作的 “黄金搭档”,共同决定着模型对语义的理解与生成能力。然而,如何科学地分配二者参数,实现性能与效率的完美平衡,始终是研究者们探索的核心问题。帕累托前沿理论凭借严谨的数学优化逻辑,为寻找 FFN 与注意力层参数的最佳组合开辟了科学路径,对推动 LLM 架构优化与任务适配具有重大意义。
2. FFN 与注意力层基础
2.1 FFN 与注意力层的功能
FFN 承担着对输入特征深度加工的重任。以输入向量为例,经过第一层线性变换
,再通过激活函数
,其中
是权重矩阵,
是偏置向量,
如 ReLU 函数。通过多层这样的计算,实现对特征的逐步抽象与增强。
多头注意力机制则像模型的 “智能雷达”,能够动态聚焦关键语义信息。对于输入序列 ,先经线性变换得到查询向量
、键向量
和值向量
,再计算注意力分数
,完成对不同位置信息的加权聚合 。
2.2 参数分配对模型的影响
FFN 参数过多会显著增加计算量,甚至引发过拟合问题。从 VC 维理论角度来看,过多的参数会增大模型容量,导致模型在训练数据上过度学习,从而降低在测试数据上的泛化能力;而注意力层参数占比过高,又可能削弱模型的特征变换与非线性表达能力。因此,精准确定二者参数的最优分配比例,是提升 LLM 综合性能的关键所在。
3. 帕累托前沿理论基础
3.1 帕累托前沿的定义
在多目标优化问题中,假设存在m个目标函数,其中
为决策变量向量。若存在解
,满足不存在其他解