大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
用代码实现判断是端还是小端:
#include<stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret==1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
结果图:
1.整数在内存中存储的规则
对于整形来说:数据存放内存中存放的是补码。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
2.浮点数在内存中存储的规则
IEEE 754规定:对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号S,接着的11位是指数E,剩下的52位位有效数字M。
存储浮点数
储存M:在计算机内部保存M时,第一位1舍去,只保存后面的小数点后的部分。
储存E:存入内存时的E的真实值需加上一个中间数,对于8位的E,中间数为127;对于11位的E。中间值为1023.
取出浮点数
取出M:怎么存怎么取。
取出E:
1.E不全为0或不全为1
指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。20.
2.E全为0
浮点数的指数E等于1-127(或者1-1023)即为真实值,即E=-126.有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示+0,以及接近于0的很小的数字。
3.E全为1
如果有效数字M全为0,表示±无穷大(正负取决于符号位s);即E=128.
典型的浮点型存储问题例题:
#include<stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
结果图:
自我的分析与见解: