描述 Description
Candy家里总共有n个垃圾等待处理,每个垃圾对于Candy和飘飘乎居士处理的时间都是不同的,而且每个垃圾只需要一个人处理。当然,Candy和飘飘乎居士可以同时处理不同的垃圾。记两人中耗费最长时间为最后总时间。Candy希望能够尽快的处理完所有的垃圾,因此,他想要知道处理完这些垃圾最少需要耗费多少时间?输入格式 InputFormat
第一行一个正整数n,表示一共有n个垃圾需要处理接下来一个2*n的矩阵。
矩阵第一行第i个数表示candy处理第i个垃圾所需消耗的时间
矩阵第二行第i个数表示飘飘乎居士处理第i个垃圾所需消耗的时间
输出格式 OutputFormat
一行,最后耗费的时间样例输入 SampleInput
5 2 4 1 4 5 2 1 3 4 1
样例输出 SampleOutput
5
数据范围和注释 Hint
Candy完成垃圾3与垃圾4的清理,耗时为5飘飘乎居士完成垃圾1 2 5的清理,耗时为4,由于Candy耗费的时间较长,所以记Candy耗费时间为最后总时间,所以最后答案为5。
对于30%的数据 0<n<=30
对于100%的数据 0<n<=1000,Candy和飘飘乎居士处理每个垃圾的时间<=10,对任何一个人处理所有垃圾时间总和<=4000
题解
用f[i,j]表示:完成前i项任务,若Candy花了j分钟,那么飘飘乎居士最少花f[i,j]分钟。
a[i]表示:Candy完成第i项任务所花的时间;b[i]表示:飘飘乎居士完成第i项任务所花的时间。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
int n,a[1002],b[1002],f[1002][4002],ans=0x7fffffff;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
memset(f,127/3,sizeof(f));
f[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<=4000;j++)
{if(j>=a[i])
f[i][j]=min(f[i-1][j]+b[i],f[i-1][j-a[i]]);
else f[i][j]=f[i-1][j]+b[i];
}
for(int i=0;i<=4000;i++)
ans=min(ans,max(f[n][i],i));
printf("%d",ans);
return 0;
}