BZOJ 2442: [Usaco2011 Open]修剪草坪

Description


在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中没有连续的超过K只奶牛。

Input


* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i


Output


* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input

5 2
1
2
3
4
5

输入解释:

FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛

Sample Output


12

FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。

题解

单调队列优化dp,但是不能用f[i]=max(f[j]+sum[i]-sum[j-1])(j在合法范围内)。要用f[i]表示i不选,从1~i中损失的最小价值。f[i]=min(f[j]+a[i]).(i-j<=k)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdlib>
#define ll long long
#define inf 99999999999999LL
using namespace std;
int n,m,q[100002];
ll a[100002],sum,f[100002],mins=inf;
void dp()
{
	int t=0,w=0;
	for(int i=1;i<=n;i++)
       {f[i]=a[i]+f[q[t]];
        while(f[q[w]]>f[i]&&t<=w) w--;
        q[++w]=i;
        while(q[t]<i-m) t++;
       }
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	   {scanf("%lld",&a[i]); sum+=a[i];}
	dp();
	for(int i=n-m;i<=n;i++) mins=min(mins,f[i]);
	printf("%lld",sum-mins);
	return 0;
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值