Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
5 2
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
12
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
题解
单调队列优化dp,但是不能用f[i]=max(f[j]+sum[i]-sum[j-1])(j在合法范围内)。要用f[i]表示i不选,从1~i中损失的最小价值。f[i]=min(f[j]+a[i]).(i-j<=k)
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdlib>
#define ll long long
#define inf 99999999999999LL
using namespace std;
int n,m,q[100002];
ll a[100002],sum,f[100002],mins=inf;
void dp()
{
int t=0,w=0;
for(int i=1;i<=n;i++)
{f[i]=a[i]+f[q[t]];
while(f[q[w]]>f[i]&&t<=w) w--;
q[++w]=i;
while(q[t]<i-m) t++;
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{scanf("%lld",&a[i]); sum+=a[i];}
dp();
for(int i=n-m;i<=n;i++) mins=min(mins,f[i]);
printf("%lld",sum-mins);
return 0;
}