BZOJ 2243: [SDOI2011]染色

Description

给定一棵有n个节点的无根树和m个操作,操作有2类:

1、将节点a到节点b路径上所有点都染成颜色c

2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“1122213段组成:“11、“222和“1

请你写一个程序依次完成这m个操作。

Input

第一行包含2个整数nm,分别表示节点数和操作数;

第二行包含n个正整数表示n个节点的初始颜色

下面 行每行包含两个整数xy,表示xy之间有一条无向边。

下面 行每行描述一个操作:

“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括ab)都染成颜色c

“Q a b”表示这是一个询问操作,询问节点a到节点b(包括ab)路径上的颜色段数量。

Output

对于每个询问操作,输出一行答案。

Sample Input

6 5

2 2 1 2 1 1

1 2

1 3

2 4

2 5

2 6

Q 3 5

C 2 1 1

Q 3 5

C 5 1 2

Q 3 5

Sample Output

3

1

2

HINT

数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。

题解

树链剖分,线段树要打lazy-tag。一定要细心,注意函数及时退出。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<cmath>
#define N 100002
using namespace std;
int n,m,zz,head[N],v[N];
struct bian {int to,nx;} e[N*2];
int h[N],fa[N][17],son[N],vis[N];
int size,bl[N],tw[N];
struct shu {int l,r,s,lc,rc,tag;} tr[4*N];
void insert(int x,int y)
{
	zz++; e[zz].to=y; e[zz].nx=head[x]; head[x]=zz;
	zz++; e[zz].to=x; e[zz].nx=head[y]; head[y]=zz;
}
void init()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) scanf("%d",&v[i]);
	for(int i=1;i<n;i++)
	   {int x,y; scanf("%d%d",&x,&y); insert(x,y);}
}
void dfs1(int x) //2^17=131072
{
	vis[x]=son[x]=1;
	for(int i=1;i<=16;i++)
	   {if(h[x]<(1<<i)) break;
	    fa[x][i]=fa[fa[x][i-1]][i-1];
	   }
	for(int i=head[x];i;i=e[i].nx)
	   {if(vis[e[i].to]) continue;
	    h[e[i].to]=h[x]+1; fa[e[i].to][0]=x;
	    dfs1(e[i].to);
	    son[x]+=son[e[i].to];
	   }
}
void dfs2(int x,int l)
{
	size++;
	bl[x]=l; tw[x]=size;
	int k=0;
	for(int i=head[x];i;i=e[i].nx)
	   {if(h[e[i].to]>h[x]&&son[e[i].to]>son[k]) k=e[i].to;}
	if(k==0) return;
	dfs2(k,l);
	for(int i=head[x];i;i=e[i].nx)
	   {if(h[e[i].to]>h[x]&&e[i].to!=k) dfs2(e[i].to,e[i].to);}
}
int lca(int x,int y)
{
	if(h[x]<h[y]) swap(x,y);
	int t=h[x]-h[y];
	for(int i=0;i<=16;i++)
	   {if(t&(1<<i)) x=fa[x][i];}
	for(int i=16;i>=0;i--)
	   {if(fa[x][i]!=fa[y][i])
		   {x=fa[x][i]; y=fa[y][i];}
	   }
	if(x==y) return x;
	return fa[x][0];
}
void build(int w,int l,int r)
{
	tr[w].l=l; tr[w].r=r; tr[w].tag=-1;
	if(l==r) return;
	int mid=(l+r)>>1;
	build(w<<1,l,mid); build((w<<1)+1,mid+1,r);
}
void down(int w)
{
	int tg=tr[w].tag; tr[w].tag=-1;
	if(tg==-1||tr[w].l==tr[w].r) return;
	tr[w<<1].tag=tr[(w<<1)+1].tag=tg;
	tr[w<<1].s=tr[(w<<1)+1].s=1;
	tr[w<<1].lc=tr[(w<<1)+1].lc=tg;
	tr[w<<1].rc=tr[(w<<1)+1].rc=tg;	
}
void up(int w)
{
	int j=1;
	if(tr[w<<1].rc!=tr[(w<<1)+1].lc) j=0;
	tr[w].s=tr[w<<1].s+tr[(w<<1)+1].s-j;
	tr[w].lc=tr[w<<1].lc; tr[w].rc=tr[(w<<1)+1].rc;
}
void change(int w,int x,int y,int c)
{
	down(w);
	int l=tr[w].l,r=tr[w].r;
	if(l==x&&r==y) {tr[w].lc=tr[w].rc=c; tr[w].s=1; tr[w].tag=c; return ;}
	int mid=(l+r)>>1;
	if(mid>=y) change(w<<1,x,y,c);
	else if(mid<x) change((w<<1)+1,x,y,c);
	else {change(w<<1,x,mid,c); change((w<<1)+1,mid+1,y,c);}
	up(w);
	
}
int find(int w,int x,int y)
{
	down(w);
	int l=tr[w].l,r=tr[w].r;
	if(x==l&&y==r) return tr[w].s;
	int mid=(l+r)>>1;
	if(mid>=y) return find(w<<1,x,y);
	else if(mid<x) return find((w<<1)+1,x,y);
	else
	   {int j=1;
	    if(tr[w<<1].rc!=tr[(w<<1)+1].lc) j=0;
		return find(w<<1,x,mid)+find((w<<1)+1,mid+1,y)-j;
	   }
}
int getc(int w,int x)
{
	down(w);
	int l=tr[w].l,r=tr[w].r;
	if(l==r) return tr[w].lc;
	int mid=(l+r)>>1;
	if(mid>=x) return getc(w<<1,x);
	else return getc((w<<1)+1,x);
}
int ask(int x,int y)
{
	int sum=0;
	while(bl[x]!=bl[y])
	   {sum+=find(1,tw[bl[x]],tw[x]);
	    if(getc(1,tw[bl[x]])==getc(1,tw[fa[bl[x]][0]])) sum--;
	    x=fa[bl[x]][0];
	   }
	sum+=find(1,tw[y],tw[x]);
	return sum;
}
void turn(int x,int y,int c)
{
	while(bl[x]!=bl[y])
	   {change(1,tw[bl[x]],tw[x],c);
	    x=fa[bl[x]][0];
	   }
	change(1,tw[y],tw[x],c);
}
void work()
{
	char ch[5];
	build(1,1,n);
	for(int i=1;i<=n;i++) change(1,tw[i],tw[i],v[i]);
	for(int i=1;i<=m;i++)
	   {scanf("%s",ch);
	    int x,y,z,t;
	    if(ch[0]=='Q')
	       {scanf("%d%d",&x,&y);
		    t=lca(x,y);
		    printf("%d\n",ask(x,t)+ask(y,t)-1);
		   }
		else
		   {scanf("%d%d%d",&x,&y,&z);
		    t=lca(x,y);
		    turn(x,t,z); turn(y,t,z);
		   }
	   }
}
int main()
{
	init(); dfs1(1); dfs2(1,1); work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值