Problem Description
Haku has been newly hired by Chef to clean tables at his restaurant. So whenever a customer wants a table, Haku must clean it.
But Haku happens to be a lazy boy. So in the morning, when the restaurant is opened, all the tables are dirty from night before.
The customer don't leave the table unless they are politely requested to do so. And customers can order meal later again. So if they were already having a table, they can be served on the same table [Haku doesn't have to clean :)]. But if they don't have a table then they must be given some table [Haku must clean :(]
The restaurant has N tables. When a customer requires a table, he/she can occupy any unoccupied table. However if all tables are occupied, then Haku is free to ask politely any customer to leave his/her table. And the freed table can be given to the waiting customer.
Now Chef has the psychic ability to tell the order of customer meal requests for the entire day. Given this list, help Haku find the minimum number of times he has to clean the tables.
Input
First line contains integer T, number of test cases.
First line of each test case contains 2 integers N, number of tables and M, number of customer orders. Followed by M integers on next line, which is the order in which customers ask for meal. Customers are referenced by integer C.
Output
For each test case output the minimum number of times Haku must clean the table(s).Constraints
1 ≤ T ≤ 1001 ≤ N ≤ 200
1 ≤ M ≤ 400
1 ≤ C ≤ 400
Example
Input:
42 4
1 2 3 4
3 2
4 1
3 6
1 2 1 3 4 1
3 5
1 2 1 3 4
Output:
42
4
4
Explanation
Example case 1. In the starting all tables i.e. 2 tables are unoccupied. When customer 1 asks for table, he can be given any of the 2 tables. Haku has to clean either of the table. Next customer 2 can occupy the other free table. Haku must clean second time. When customer 3 comes Haku can ask either customer 1 or 2 to leave. Suppose he asks customer 1 to leave. Then he has to clean table for the third time. When customer 4 comes, Haku can ask customer 2 or 3 to leave. In either case Haku will have to clean the table for the fourth time. Phew!!Example case 4. Suppose the tables are listed as [-, -, -]. A possible optimal order of allocating tables can be [1, -, -] -> [1, 2, -] -> [1, 2, -] -> [1, 2, 3] -> [4, 2, 3]. So Haku will have to clean table for order no. 1, 2, 4 and 5. That is 4 times.
题解
一道傻题,打错一个字母,查了两个小时……毕竟是弱啊。
每次请出“下一次点菜”顺序最靠后的就好 。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int T,n,m,a[500];
int head[500],nx[500],seat[500],pd[500];
void init()
{
memset(head,0,sizeof(head));
memset(nx,0,sizeof(nx));
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++) scanf("%d",&a[i]);
for(i=m;i>0;i--)
{if(head[a[i]]==0) {head[a[i]]=i; nx[i]=9999;}
else {nx[i]=head[a[i]]; head[a[i]]=i;}
}
}
void work()
{
int i,j,maxl,w,top=0,ans=0;
memset(pd,0,sizeof(pd));
for(i=1;i<=m;i++)
{if(pd[a[i]]==1)
{for(j=0;j<top;j++)
{if(a[seat[j]]==a[i])
{seat[j]=i; break;}
}
}
else if(pd[a[i]]==0&&top<n)
{ans++; seat[top]=i; top++; pd[a[i]]=1;}
else if(pd[a[i]]==0&&top>=n)
{maxl=-99;
for(j=0;j<top;j++)
{if(nx[seat[j]]>maxl)
{maxl=nx[seat[j]]; w=j;}
}
pd[a[seat[w]]]=0; pd[a[i]]=1; ans++; seat[w]=i;
}
}
printf("%d\n",ans);
}
int main()
{
scanf("%d",&T);
while(T--)
{init(); work();}
return 0;
}