19-PDE-PTE

不知在《分页》文章里,你有没有搞懂什么是页,同时还延伸出了页表的概念。另外,还解释了逻辑地址、线性地址和物理地址之间的关系。我知道你脑子可能是一团浆糊,这只能怪我的语言表达能力还不够强。

大段大段的文字让人读起来有时候很恼火,可是为了阐释问题,大段大段文字有时候又避免不了。所以,有时候不得不砍去细支末节,压缩篇幅。

为了能够强化分页的知识,本篇扼要回顾前两篇内容,精简总结几个概念之间的关系。

1. 页、页索引号、页表、页目录

  • :物理内存中固定大小(4KB)的连续内存块。必须以4KB对齐划分。
  • 页索引号:把物理内存中的页挨个编号,从 0 开始,一直到最后一页。如果是物理内存只有40KB大小,最后一页的索引号就是 9.
  • 页索引号占用 20 bit.
  • 页表:一个大小为 1024 个元素的数组,用来保存页索引号。数组中的每个元素的高20 bit 用来保存页索引号,低 12 bit 保存页属性。每个元素的大小是 32 bit,也就是 4 字节。
  • 一个页表本身占用一页(4KB)
  • 页目录:页表本身既然也占用一页,那页表本身这个物理页也是有索引号的。所以保存这种物理页索引号的页表,叫一级页表,也叫页目录。

图1 中展示了页目录、页表和普通物理页之间的关系,这张图在14篇你也见到过。细心的你可能会注意到一级页表中,有一个表项,PDE768,它竟然指向了自己!

这没有什么好惊讶的,因为一级页表中保存的,本来就是另一个页表所在物理页的索引号。一级页表难道就不是页表吗?

这里写图片描述

图1 页目录、页表和普通物理页

2. PDE、PTE

即使我不说,你肯定也知道 PDE、PTE是什么了。

没错,PDE 是页目录表项。而 PTE是页表表项。(在以后的文字里,一级页表我将以页目录表代之;二级页表,简称页表。)

为何一个 PDE、PTE都要单独拿出来说?还记得不,不管是PDE还是PTE,其中的高 20 bit 是用来保存索引号的,而低 12 bit,你只知道保存了属性,如果你还没有去百度 or 谷歌,你肯定不知道这 12 bit 保存了什么。

无论怎样,先来看看 PDE 和 PTE 的结构。

  • PDE 结构
|<------ 31~12------>|<------ 11~0 --------->| 比特
                     |b a 9 8 7 6 5 4 3 2 1 0| 
|--------------------|-|-|-|-|-|-|-|-|-|-|-|-| 占位
|<-------index------>| AVL |G|P|0|A|P|P|U|R|P| 属性
                             |S|   |C|W|/|/|
                                   |D|T|S|W|
  • PTE 结构
|<------ 31~12------>|<------ 11~0 --------->| 比特
                     |b a 9 8 7 6 5 4 3 2 1 0|
|--------------------|-|-|-|-|-|-|-|-|-|-|-|-| 占位
|<-------index------>| AVL |G|P|D|A|P|P|U|R|P| 属性
                             |A|   |C|W|/|/|
                             |T|   |D|T|S|W|

从上面的结构,发现 PDE 和 PTE 的结构基本上差不多,但是有个别比如第 7 位就不一样。

3. 属性含义

  • P:有效位。0 表示当前表项无效。
  • R/W: 0 表示只读。1表示可读写。
  • U/S: 0 表示只能0、1、2特权级可访问。3 表示只有特权级程序可访问
  • A: 0 表示该页未被访问,1表示已被访问。
  • D: 脏位。0表示该页未写过,1表示该页被写过。
  • PS: 只存在于页目录表。0表示这是4KB页,指向一个页表。1表示这是4MB大页,直接指向物理页。
  • PWT、PCD、G:暂不讲解

4. 总结

本篇回顾了前两篇的知识,旨在巩固大家对页、页目录、页表的理解。另外,给出了 PDE和PTE的详细结构。

其中需要注意的是,页目录表中的 PS 位,当 PS 为 0 的时候,就是我们前面所熟知的 4 KB 小页面。如果该位为 1,那么该 PDE 指向的不是页表,而是一个 4MB 的普通物理页。

<think>嗯,用户想了解如何在MATLAB中处理偏微分方程(PDE)的梯度计算方法,并且需要示例。首先,我需要回忆一下MATLAB中有关PDE的工具箱,特别是pdetool的使用。根据参考内容,用户提到使用图形界面(pdetool)来编程,然后导出代码,适合零基础用户。这可能涉及到PDE Toolbox的功能,比如求解特征值问题,但用户现在关心的是梯度计算。 首先,梯度计算通常在求解PDE后处理步骤中进行。比如,当用有限元方法求解PDE后,得到解u的数值解,然后计算其梯度。在MATLAB中,可能需要使用pdegrad函数或者通过TriangularMesh的数据结构来获取梯度信息。 然后,我需要确认具体的步骤。比如,用户可能先定义几何模型,设置边界条件,求解PDE,然后进行后处理。梯度计算可能需要用到节点或单元上的解数据。可能还需要使用pdegrad函数,该函数可以计算三角形网格上解的梯度。另外,pdeplot函数可能用来可视化结果,包括梯度向量。 另外,用户可能需要一个具体的示例代码。例如,如何求解一个简单的泊松方程,然后计算解的梯度。或者参考提供的示例中的特征值问题,但梯度计算可能在特征函数上的应用。比如,用户提供的参考中的例子是-Δu = λu,解u的梯度计算步骤类似,但可能需要先求解该方程,再对解进行梯度计算。 需要注意,梯度计算可能需要使用到网格的节点和三角形单元信息。在MATLAB中,通常通过模型的Mesh结构来获取这些数据。比如,使用model.Mesh.Nodes获取节点坐标,model.Mesh.Elements获取单元连接信息。然后解u的结果可能存储在一个向量中,每个节点对应一个值。 另外,可能需要处理梯度在三角形单元内的计算,因为有限元方法中的解是分片多项式函数,梯度在每个单元内是常数。因此,pdegrad函数返回的是每个三角形单元中心的梯度值。 需要确保示例代码正确,包括使用pdegrad的语法,比如输入节点坐标、三角形单元、解的数值等。同时,可视化部分可能需要用quiver来绘制梯度场,或者用pdeplot的相关选项。 可能的步骤是: 1. 创建PDE模型,定义几何。 2. 设定系数和边界条件。 3. 生成网格。 4. 求解PDE,得到解u。 5. 使用pdegrad计算梯度。 6. 可视化结果。 例如,针对一个简单的泊松方程,比如Δu = f,求解后计算梯度。或者用户提到的例子中的特征值问题,但可能更复杂。考虑到用户的问题是关于梯度计算,可能需要一个更直接的例子,比如求解一个已知解的方程,然后计算梯度并与理论值比较,但用户可能只需要基本的示例。 另外,需要注意MATLAB的版本,不同版本中PDE Toolbox的函数可能有所不同。例如,现在推荐使用createpde函数来创建模型,而不是旧的initmesh等函数,但旧的方法可能仍可使用。 总结,回答应该包括使用pdetool的图形界面方法导出代码,以及直接脚本编写的示例。可能需要分步骤说明,并给出代码示例,包括梯度计算和可视化的部分。同时,要引用提供的参考中的信息,例如使用pdetool的步骤,并添加引用标记[^1]。</think>在MATLAB中处理偏微分方程(PDE)的梯度计算,可通过PDE Toolbox结合数值方法实现。以下是具体方法和示例: --- ### **步骤说明与示例** #### **1. 定义PDE模型与几何** 首先使用`createpde`创建模型并定义求解区域。以下以L型区域为例: ```matlab model = createpde(); geometryFromEdges(model,@lshapeg); % L型区域 ``` #### **2. 设定方程类型与系数** 假设求解泊松方程$-\Delta u = f$,设定方程系数: ```matlab specifyCoefficients(model, 'm', 0, 'd', 0, 'c', 1, 'a', 0, 'f', 1); % c=1对应拉普拉斯项,f=1为源项 ``` #### **3. 边界条件与网格生成** 定义边界条件并生成网格: ```matlab applyBoundaryCondition(model, 'dirichlet', 'Edge', 1:model.Geometry.NumEdges, 'u', 0); % 固定边界为0 generateMesh(model, 'Hmax', 0.1); % 控制网格密度 ``` #### **4. 求解PDE并提取解** ```matlab results = solvepde(model); u = results.NodalSolution; % 节点处的解 ``` #### **5. 计算梯度** 使用`pdegrad`函数计算梯度,返回每个三角形单元中心的梯度值$(\partial u/\partial x, \partial u/\partial y)$: ```matlab [gradx, grady] = pdegrad(model.Mesh.Nodes, model.Mesh.Elements, u); % gradx和grady为每个单元的梯度分量 ``` #### **6. 可视化梯度场** ```matlab pdeplot(model, 'FlowData', [gradx; grady]); % 用箭头图显示梯度场 ``` --- ### **完整示例代码** ```matlab % 创建模型与几何 model = createpde(); geometryFromEdges(model, @lshapeg); % 设置方程系数和边界条件 specifyCoefficients(model, 'm', 0, 'd', 0, 'c', 1, 'a', 0, 'f', 1); applyBoundaryCondition(model, 'dirichlet', 'Edge', 1:model.Geometry.NumEdges, 'u', 0); % 生成网格并求解 generateMesh(model, 'Hmax', 0.1); results = solvepde(model); u = results.NodalSolution; % 计算梯度 [gradx, grady] = pdegrad(model.Mesh.Nodes, model.Mesh.Elements, u); % 可视化解与梯度 figure; subplot(1,2,1); pdeplot(model, 'XYData', u); title('解u的分布'); subplot(1,2,2); pdeplot(model, 'FlowData', [gradx; grady]); title('梯度场'); ``` --- ### **关键说明** - **梯度计算原理**:有限元方法中,解在单元内为线性插值函数,梯度为常数。`pdegrad`通过单元节点坐标和解的节点值计算梯度。 - **图形界面操作**:可通过`pdetool`绘制几何、设置方程后导出代码,再添加梯度计算部分。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值