【问题描述】
经过 11 年的韬光养晦,某国研发出了一种新的导弹拦截系统,凡是与它的距离不超过其工作半径的导弹都能够被它成功拦截。当工作半径为 0 时,则能够拦截与它位置恰好相同的导弹。但该导弹拦截系统也存在这样的缺陷:每套系统每天只能设定一次工作半径。而当天的使用代价,就是所有系统工作半径的平方和。
某天,雷达捕捉到敌国的导弹来袭。由于该系统尚处于试验阶段,所以只有两套系统投入工作。如果现在的要求是拦截所有的导弹,请计算这一天的最小使用代价。
【输入格式】
输入文件名 missile.in。
第一行包含 4 个整数x1、y1、x2、y2,每两个整数之间用一个空格隔开,表示这两套导弹拦截系统的坐标分别为(x1, y1)、(x2, y2)。
第二行包含 1 个整数 N,表示有 N颗导弹。接下来 N行,每行两个整数 x、y,中间用一个空格隔开,表示一颗导弹的坐标(x, y)。不同导弹的坐标可能相同。
【输出格式】
输出文件名 missile.out。
输出只有一行,包含一个整数,即当天的最小使用代价。
【输入输出样例1】
0 0 10 0
2
-3 3
10 0
18
【样例 1 说明】
样例1中要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为 18 和 0。
【输入输出样例2】
0 0 6 0
5
-4 -2
-2 3
4 0
6 -2
9 1
30
【样例 2 说明】
样例中的导弹拦截系统和导弹所在的位置如下图所示。要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为 20 和 10。
【数据范围】
对于 10%的数据,N = 1
对于 20%的数据,1 ≤ N ≤ 2
对于 40%的数据,1 ≤ N ≤ 100
对于 70%的数据,1 ≤ N ≤ 1000
对于 100%的数据,1 ≤ N ≤ 100000,且所有坐标分量的绝对值都不超过 1000。
思路引用自:NOIP2010导弹拦截 - 贪心 - hzwer.com
设拦截系统为a,b。按照导弹到其中一个拦截系统a的距离排序,将离a最近的i个导弹都交给a,其余给b,倒序枚举断点,每次更新答案。
/*
Name: missile.cpp
Copyright: Twitter & Instagram @stevebieberjr
Author: @stevebieberjr
Date: 25-07-16 11:44
*/
#include<cstdio>
#include<algorithm>
#define inf 0X7FFFFFFF
using namespace std;
int n,cost=inf;
int x1,y1,x2,y2;
struct data
{
int x,y,dist1,dist2;
}a[100005];
bool cmp(data a,data b)
{
return a.dist1<b.dist1;
}
int main()
{
freopen("missile.in","r",stdin);
freopen("missile.out","w",stdout);
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].x,&a[i].y);
a[i].dist1=(a[i].x-x1)*(a[i].x-x1)+(a[i].y-y1)*(a[i].y-y1);
a[i].dist2=(a[i].x-x2)*(a[i].x-x2)+(a[i].y-y2)*(a[i].y-y2);
//计算距离
}
sort(a+1,a+n+1,cmp);
int r=0;
for(int i=n;i>=0;i--) //从离a最远的导弹开始枚举
{
r=max(a[i+1].dist2,r); //将i+1号导弹交给系统b,更新系统b的半径
cost=min(cost,a[i].dist1+r); //更新答案
}
printf("%d\n",cost);
return 0;
}