【问题描述】
每年奶牛们举行一场奇特的活动。他们从左岸出发,一个个小心地跳过河上的石头,最后跳到右岸。左右岸上各有一块石头,分别是起点和终点,而它们之间有N块石头在河上,它们与两岸的两块石头处在同一条直线上。左右岸相距L个单位长度,而每块石头到左岸都有一个距离Di(0 < Di < L)。
Farmer John很自豪地看着他的奶牛们一个个跳过河,但是渐渐地他厌倦了。他希望移走河上的一些石头,使得剩下的石头(包括岸上的)中,最近的两个石头间的距离增加。然而因为精力有限,他不能移走太多石头,最多移走M(0 <= M <= N )块。他想知道石头间的距离最长是多少。
【输入格式】
第1行:三个整数L,N和M。
第2..N+1行:每行一个整数,表示石头到左岸的距离。输入保证没有两块石头会在同一处。
【输出格式】
仅一个整数,表示移走若干块石头后的最长的最短距离。
【输入样例】
25 5 2
2
14
11
21
17
【输出样例】
4
【数据范围】
1<=N<=50000
1<=L<=1000000000
【样例解释】
移走距离左岸2和14的石头,还剩下0,11,17,21,25,他们之间的最小距离为4.
思路:要求最短距离最长,可用二分搜索法假设最短的距离为x,即所有石头的距离都必须大于等于x,在check时用贪心+区间选点验证假设是否成立。若成立,则需要移走的石头数量应小于等于M,则可以将x向上猜。
/*
Name: River_Hopscotch
Copyright: Twitter & Instagram @stevebieberjr
Author: @stevebieberjr
Date: 31-07-16 10:49
*/
#include<cstdio>
#include<algorithm>
using namespace std;
int l,n,m;
int a[50005];
int L;
bool check(int x)
{
int last=0;
int ans=0;
for(int i=1;i<=n;i++)
{
if(a[i]-last<x)
ans++;
else
last=a[i];
}
if(ans>m) return 0;
return 1;
}
int main()
{
scanf("%d%d%d",&L,&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+1+n);
a[n+1]=L;
n++;
int l=0,r=L;
while(l<=r)
{
int mid=(l+r)/2;
if(check(mid)) l=mid+1;
else r=mid-1;
}
printf("%d\n",l-1);
return 0;
}