【问题描述】
涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:,其中 ai表示第一列火柴中第 i 个火柴的高度,bi表示第二列火柴中第 i 个火柴的高度。
每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。
【输入格式】
共三行,第一行包含一个整数 n,表示每盒中火柴的数目。
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。
【输出格式】
输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。
【输入样例】
【样例1】
4
2 3 1 4
3 2 1 4
【样例2】
4
1 3 4 2
1 7 2 4
【输出样例】
【样例1】
1
【样例2】
2
【样例解释】
【样例1说明】
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。
【样例2说明】
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。
【数据范围】
对于 10%的数据, 1 ≤ n ≤ 10;
对于 30%的数据,1 ≤ n ≤ 100;
对于 60%的数据,1 ≤ n ≤ 1,000;
对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ 2^31 - 1。
思路:完全想不到用逆序对来做,考试的时候还以为是某种贪心算法。(2016.8.3:昨天晚上想了一下觉得这道题应该也含有贪心思想,要将两个队列都由小到大排序。)
正解是:将A,B两个队列都从小到大排序,排序后A队列第i个位置的火柴原来的id就是现在B队列第i个位置的火柴应该交换到的位置,在将B队列还原,理由为数论中的排序不等式(根本不知道是什么鬼,请自行谷歌)。
/*
Name: match.cpp
Copyright: Twitter & Instagram @stevebieberjr
Author: @stevebieberjr
Date: 02/08/16 19:33
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define maxn 100005
#define mod 99999997
using namespace std;
int n;
struct data
{
int s,id,d;
}m1[maxn],m2[maxn];
bool cmp1(data a,data b)
{
return a.s<b.s;
}
bool cmp2(data a,data b)
{
return a.id<b.id;
}
int t[maxn];
long long calc(int x,int y)
{
if(x>=y) return 0;
int m=(x+y)>>1;
long long t1=calc(x,m);
long long t2=calc(m+1,y);
long long t3=0;
int i=x,j=m+1,k=x;
for(;i<=m && j<=y;)
{
if(m2[i].d>m2[j].d)
{
t[k++]=m2[j++].d;
t3+=(m-i+1)%mod;
}
else t[k++]=m2[i++].d;
}
for(;i<=m;) t[k++]=m2[i++].d;
for(;j<=y;) t[k++]=m2[j++].d;
for(int i=x;i<=y;i++) m2[i].d=t[i];
return ((t1+t2)%mod+t3)%mod;
}
int main()
{
freopen("match.in","r",stdin);
freopen("match.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&m1[i].s);
m1[i].id=i;
}
for(int i=1;i<=n;i++)
{
scanf("%d",&m2[i].s);
m2[i].id=i;
}
sort(m1+1,m1+1+n,cmp1);
sort(m2+1,m2+1+n,cmp1);
for(int i=1;i<=n;i++)
{
m2[i].d=m1[i].id;
}
sort(m2+1,m2+1+n,cmp2);
long long ans=calc(1,n);
cout<<ans<<endl;
return 0;
}