【问题描述】
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。
乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。
游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。
很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?
【输入格式】
输入文件的每行中两个数之间用一个空格隔开。
第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。
第2行N个非负整数,a1a2……aN,其中ai表示棋盘第i个格子上的分数。
第3行M个整数,b1b2……bM,表示M张爬行卡片上的数字。
输入数据保证到达终点时刚好用光M张爬行卡片。
【输出格式】
输出只有1行,1个整数,表示小明最多能得到的分数。
【输入样例】
9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
【输出样例】
73
【样例解释】
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。
【数据范围】
对于30%的数据有1≤N≤30,1≤M≤12。
对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。
对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;0≤ai≤100,1≤i≤N;1≤bi≤4,1≤i≤M。
思路:这类动态规划题,一般设为f[i][j]:前i个格子用j张牌能获得的最大分数。
但是这道题中,有四种类型的牌,因此需要用f[i][j][k][p][q]:前i个格子用j张1牌、k张2牌、p张3牌、q张4牌能获得的最大分数。
这样设方程再使用滚动数组的话对于题目的数据范围已经足够了,但是考试的时候老师将N改为了600,每种卡片的张数改为了60. 这样的话状态函数就有些力不从心了。
但是经过仔细的思考可以发现:i=j*1+k*2+p*3+q*4+1, 因此可以将i从状态函数中去掉。(考试的时候并没有思考出来。)
所以正解为:f[j][k][p][q]:用j张1牌、k张2牌、p张3牌、q张4牌走到i=j*1+k*2+p*3+q*4+1这个格子能获得的最大分数。状态转移方程详见代码。
/*
Name: frog.cpp
Copyright: Twitter & Instagram @stevebieberjr
Author: @stevebieberjr
Date: 07/08/16 19:45
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int a[505],b[5];
int f[65][65][65][65];
int main()
{
freopen("frog.in","r",stdin);
freopen("frog.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(b,0,sizeof(b));
for(int i=1;i<=m;i++)
{
int x;
scanf("%d",&x);
b[x]++;
}
memset(f,-0X3F,sizeof(f));
f[0][0][0][0]=a[1];
for(int j=0;j<=b[1];j++)
{
for(int k=0;k<=b[2];k++)
{
for(int p=0;p<=b[3];p++)
{
for(int q=0;q<=b[4];q++)
{
if(j==0 && k==0 && p==0 && q==0) continue; //这行代码必须保留,否则f[0][0][0][0]会被赋值为a[1]+a[1]
if(j-1>=0) f[j][k][p][q]=max(f[j][k][p][q],f[j-1][k][p][q]);
if(k-1>=0) f[j][k][p][q]=max(f[j][k][p][q],f[j][k-1][p][q]);
if(p-1>=0) f[j][k][p][q]=max(f[j][k][p][q],f[j][k][p-1][q]);
if(q-1>=0) f[j][k][p][q]=max(f[j][k][p][q],f[j][k][p][q-1]);
f[j][k][p][q]+=a[j*1+k*2+p*3+q*4+1];
}
}
}
}
printf("%d\n",f[b[1]][b[2]][b[3]][b[4]]);
return 0;
}