一、文章介绍
作者指出现有CNN架构中使用跨步卷积和池化层的设计,在处理低分辨率图像或小物体时会导致信息的丢失和特征表示的不足。提出的SPD-Conv结构包含一个空间到深度(Space-to-Depth, SPD)层和一个非跨步的卷积层。SPD层可以在不丢失信息的情况下降低特征图的空间维度,而后续的非跨步卷积层则用于处理增加的通道数,以学习有效的特征。
论文的主要创新在于提出了一个新的CNN构建块,有效地解决了传统CNN在处理特定类型数据时的限制,并通过广泛的实验验证了其有效性。这一研究不仅推动了计算机视觉领域在低分辨率和小物体检测上的发展,也为后续的相关研究提供了新的技术路径和实现方式。
SPD-Conv可以应用于大多数CNN架构,并且在对象检测和图像分类两个代表性任务上的实验显示,使用SPD-Conv改进的网络结构(如YOLOv5-SPD和ResNet-SPD)在处理小物体和低分辨率图像时,与现有的深度学习模型相比有显著的性能提升。
作者在COCO-2017、Tiny ImageNet和CIFAR-10数据集上对改进后的模型进行了测试。结果表明,对于小物体检测和低分辨率图像分类,SPD-Conv提供了更高的平均精度(AP)和top-1准确率