Natural Language Processing-自然语言处理-机器学习(数学相关)

这篇博客探讨了自然语言处理中概率的基础概念,包括主观概率与客观概率的区分,以及概率的和。接着,文章讲解了独立事件、贝叶斯概率、二项式分布等统计原理,并通过实例解释了如何利用方差判断变量间的关系。此外,还介绍了多种概率分布,如伽马分布、beta分布、泊松分布和高斯分布,以及它们在自然语言处理中的应用。
摘要由CSDN通过智能技术生成

随时间更新

目录

概率Porbability

什么是概率

概率的和

独立事件

贝叶斯概率

二项式分布

 

利用方差判断两种变量的关系:covariance

多项式分布

辛普森谬误

 

指数

伽马分布

beta分布

泊松分布

高斯分布

对数正态分布


概率Porbability

什么是概率

抛一枚硬币,会有多种可能

我们想象种有正反两种可能,有硬币立在地上的可能,也有硬币途中破碎的可能....

若依照这种原则,从人自身的角度所预测出的结果叫做主观概率。

但在实际生活种抛硬币往往只出现一正一反两种结果,

若根据结果反推概率,则叫做客观概率,即 频率=概率。

 

举例:

主观概率往往是经验堆叠的产物,

比如订个外卖,路程大约10分钟,红绿灯1分钟,做饭1分钟,则12分钟送达的概率大约为80%

客观概率往往根据统计结果而来,

比如相同条件下订了同样的外卖100次,80次都是12分钟送达,则12分钟送达的概率大约为80%

 

我们所得到的概率,往往是主客观概率相互叠加的结果。

比如抛一枚硬币,100次,55正,45反。

对于这个数据,我们有2种处理办法。

首先环境因素是我们我法掌握的信息,我们所了解的信息只有硬币的正反两面一定是不同的。

所以我们完全可以认为正面更容易朝上,就是因为正反两面的轻微不同导致的。

但我们也同样也可以认为,正反两面的概率是一样的,出现频率不同只是正常的现象。

只是综合考虑,往往认同第二种结果。二者都没有绝对的正确。

 

概率的和

概率的和 表示 全集,所有。

是自上而下,先设定总和,再考虑部分占比。这点很重要

所以概率的和可以是任何正数,为了方便取1

要搞清概率,重要的是看它如何从整体向下分。

 

独立事件

有两个人

(1)假如第一个是男,则第二个是男的概率?

第一个是男,等价于设定了第一个事件A,男,概率为100%

求第二个是男的概率?等价于再次设定了一个事件B,男50%,女50%

0.5

(2)两个都是男的概率?

直接划定了整体为1,在考虑部分

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值