问题描述
n个人参加某项特殊考试。
为了公平,要求任何两个认识的人不能分在同一个考场。
求是少需要分几个考场才能满足条件。
输入格式
第一行,一个整数n(1<n<100),表示参加考试的人数。
第二行,一个整数m,表示接下来有m行数据
以下m行每行的格式为:两个整数a,b,用空格分开 (1<=a,b<=n) 表示第a个人与第b个人认识。
输出格式
一行一个整数,表示最少分几个考场。
样例输入
5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
4
样例输入
5
10
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
样例输出
5
思路:用深度优先搜索的思想从第一个学生开始进行安排,但是这里注意一个问题:题目要求最小考场数,即并不是当这个考场没有认识的人就一定要安排进去,也可以安排下一个没有认识的人的考场或者新建一个考场,搜索所有的方案,安排完所有学生后找出最小的解。因此这里就得用到回溯剪枝的思想了。
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <vector>
using namespace std;
int n,m,ans=9999;//最小考场数默认9999
int G[101][101];//存储两人关系的邻接矩阵
vector<int> room[101]; //房间数组 开辟101个房间
void dfs(int x,int sum1) //当前的第x个学生,当前的考场数
{
if(x>n) //如果所有学生安排完毕
{ ans=min(ans,sum1);//找出最小考场数
return ;
}
if(sum1>=ans)//剪枝 如果当前考场已经比最小考场数大了,就不用往下进行安排了
return ;
int i,j,flag;
for(i=1;i<=sum1;i++)
{ flag=0; //默认两个人不认识
for(j=0;j<room[i].size();j++)
{ if(G[room[i][j]][x])//如果他俩认识
{ flag=1;//标记为1并退出
break;
}
}
if(!flag)//如果循环完这个考场都不认识
{ room[i].push_back(x);//安排进这个考场
dfs(x+1,sum1);//下一次搜素
room[i].pop_back();//回溯 再把它取出来 ,不把它安排这个考场
}
}
room[sum1+1].push_back(x);//没有办法,新增考场 ,将它安排进新考场
dfs(x+1,sum1+1);//再进行下一次搜素
room[sum1+1].pop_back(); //回溯 ,不安排它
}
int main()
{ cin>>n>>m;
int i,s,e;
for(i=1;i<=m;i++)//输入关系
{ cin>>s>>e;
G[s][e]=G[e][s]=1;
}
dfs(1,0);//从第一个学生开始进行搜索(安排考场)
printf("%d\n",ans);
return 0;
}