试题 历届试题 分考场

问题描述
  n个人参加某项特殊考试。
  为了公平,要求任何两个认识的人不能分在同一个考场。
  求是少需要分几个考场才能满足条件。
输入格式
  第一行,一个整数n(1<n<100),表示参加考试的人数。
  第二行,一个整数m,表示接下来有m行数据
  以下m行每行的格式为:两个整数a,b,用空格分开 (1<=a,b<=n) 表示第a个人与第b个人认识。
输出格式
  一行一个整数,表示最少分几个考场。
样例输入
5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
4
样例输入
5
10
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
样例输出
5
思路:用深度优先搜索的思想从第一个学生开始进行安排,但是这里注意一个问题:题目要求最小考场数,即并不是当这个考场没有认识的人就一定要安排进去,也可以安排下一个没有认识的人的考场或者新建一个考场,搜索所有的方案,安排完所有学生后找出最小的解。因此这里就得用到回溯剪枝的思想了。

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <vector>
using namespace std;
int n,m,ans=9999;//最小考场数默认9999 
int G[101][101];//存储两人关系的邻接矩阵 
vector<int> room[101]; //房间数组  开辟101个房间 
void dfs(int x,int sum1) //当前的第x个学生,当前的考场数 
{ 
  if(x>n) //如果所有学生安排完毕 
  { ans=min(ans,sum1);//找出最小考场数 
    return ;
  }
  if(sum1>=ans)//剪枝 如果当前考场已经比最小考场数大了,就不用往下进行安排了 
  return ;
  int i,j,flag;
   for(i=1;i<=sum1;i++)  
    { flag=0; //默认两个人不认识 
	  for(j=0;j<room[i].size();j++)
      { if(G[room[i][j]][x])//如果他俩认识 
        { flag=1;//标记为1并退出 
		   break;
        }
		
      }
      if(!flag)//如果循环完这个考场都不认识 
      { room[i].push_back(x);//安排进这个考场 
        dfs(x+1,sum1);//下一次搜素 
        room[i].pop_back();//回溯  再把它取出来 ,不把它安排这个考场 
      }
      
    }
   room[sum1+1].push_back(x);//没有办法,新增考场 ,将它安排进新考场 
   dfs(x+1,sum1+1);//再进行下一次搜素 
   room[sum1+1].pop_back();   //回溯 ,不安排它 
}
int main()
{   cin>>n>>m;
    int i,s,e;
    for(i=1;i<=m;i++)//输入关系 
    { cin>>s>>e;
      G[s][e]=G[e][s]=1;
    }
    dfs(1,0);//从第一个学生开始进行搜索(安排考场) 
    printf("%d\n",ans);
	 return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔梦圆的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值