文章目录
一、函数求极限
1. 无穷小的比较
-
=0,∞,k,0
-
常见的等价无穷小
- 一阶,二阶,三阶
-
等价替换原理
注意:整个极限而言 ==乘除因子==中才可以用替换,加减用泰勒或者化简变成乘替换!
-
等价无穷小的充要条件
化成 ‘=’ 号,加上误差
2.泰勒公式
3.极限运算法则
-
极限的加减乘除
-
抓大头
-
复合函数
注意:里面的极限是趋向而不能相等 -
洛必达法则
4. 求极限通法
- 代入x,分析极限类型和可使用的化简
- 化简:
多考虑,抓大头,+1-1,开根号等 - 求值
- 洛必达和泰勒
- 洛必达和泰勒
5. 典型例题和补充细节
重点在化简部分:
- 去根号:n-n 化成 n+n直接得出结果,注意 | x^2| = ±x
- 提公因式:有e什么 - e什么的就提前方便的再重要极限
二、函数求导
1. 定义
- 变化率
注意:一般都是考一个点的导数,就先写定义上去,一个个找就行
- 几何意义
- 斜率,切线,法线
总结:
计算:一般都用到洛必达法则,因为要得出导数
2. 各类型函数求导
- 基本求导公式和四则运算
- 复合函数求导
- 隐函数求导(直接求)
- 参数方程求导
- 反函数求导
- 高阶导数
- 找规律
- 莱布尼茨公式
- 泰勒公式
三、积分
01、不定积分
1. 概念与基本公式.
- 概念
- 基本积分公式
2. 四大积分方法
- 第一类换元法(微分法)
- 第二类(去根号)
- 一次
- 二次
-
技巧注意
- 1.二次三角换元时,注意什么时候用反函数,什么时候用画图直接搞数
-
- 分部积分法
在,想不到或用不了(1)时,先用试试;
或者多做题了解清楚大概什么题型可以用。(如:分母是2次方等等)
- 有理函数积分法
3. 三角有理函数积分
-
技巧
-
1.凑的技术:搞不定时可以试着凑(分子和分母的关系)【如,1/2(a-b+b+a)就是几组的组合了,看有没有分子和分母有积分导数联系的等等 】
2.分子为常数时,可以处或者乘些东西,让其有操作性(如:常见secx^2 = dtanx,tanxsec = d secx 等等)
3.+1-1,和弄平方差
∫cscx dx
=∫1/sinx dx
=∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式
=∫1/[sin(x/2)cos(x/2)] d(x/2)
=∫1/tan(x/2)*sec²(x/2) d(x/2)
=∫1/tan(x/2) d[tan(x/2)],注∫sec²(x/2)d(x/2)=tan(x/2)+C
=ln|tan(x/2)|+C。
02 定积分
1. 性质
- 线性性质
- 不等式性质
- 对称性
2. 计算
- 牛顿莱布尼茨公式
- 定积分的换元法
- 分部积分
- 区间再现
- 华里士公式
03变限积分与反常积分
1. 变限积分
- 形式
- 连续性
- 可导性
- 变限积分的导数
2. 反常积分
- 无穷限上的反常积分
- 无界函数
- 伽玛函数