近期DeepSeek爆火,也在探索DeepSeek学术方面的辅助能力,测试一下与其他平台辅助能力的差别。今天探索利用DeepSeek来绘制流程图的可能性。这一尝试借助DeepSeek的强大功能并与Kimi生成流程图的能力进行对比,希望能够提升流程图绘制的效率和准确性。通过自动化生成流程图,可以节省时间,还能确保图表的逻辑性和美观性,从而更好地辅助学术研究。
之前我们就了解到Kimi的流程图嵌入了Mermaid,只需要在提示词中指明使用Mermaid绘制流程图,它就能直接展示格式化的CODE以及流程图图样。这里是我根据之前《基于生成对抗网络 (GAN) 的图像超分辨率重建及其在医学图像处理中的应用》这篇文章生成的流程图。下面我们来看看DeepSeek生成的流程图效果怎么样。
1.学术论文中的流程图
学术论文中的流程图是一种直观展示研究方法、实验设计或数据分析过程的手段。用于清晰地展示研究的方法、步骤或过程。下面是小编总结的学术论文中的章节对流程图的需求:
引言 (Introduction)
研究背景:展示研究领域的现状和研究问题的出现。
研究目的和问题:明确研究的目标和主要问题。
文献综述 (Literature Review)
研究领域的历史和发展:展示现有研究的脉络和本研究的定位。
方法 (Methods)
研究设计:展示研究的类型(定性、定量或混合方法)和设计框架。
数据收集:描述数据收集的工具、程序和时间表。
数据分析:概述数据分析的步骤和使用的统计方法或理论框架。
研究流程 (Research Process)
实验流程:如果研究包含实验,流程图可以展示实验的具体步骤。
调查流程:对于调查研究,流程图可以展示调查的实施过程。
数据 (Data)
数据处理:展示数据清洗、转换和准备的步骤。
数据库结构:如果研究涉及数据库,流程图可以展示数据库的结构和关系。
结果 (Results)
结果概述:流程图可以展示结果的组织结构或分析结果的流程。
结果解释:有时流程图用于解释复杂结果的逻辑或步骤。
讨论 (Discussion)
结果的意义:展示如何将研究结果与现有文献和理论联系起来。
结果的应用:描述研究结果对实践或政策的具体应用。
结论 (Conclusion)
研究总结:流程图可以展示研究的主要发现和结论。
未来研究:提出未来研究的方向和建议。
附录 (Appendix)
研究工具:展示研究中使用的工具,如问卷或实验材料。
数据表格:如果有必要,流程图可以展示数据的详细分类或编码。
流程图在学术论文中的作用是帮助读者快速理解研究过程,能够清晰、准确地反映研究的步骤和逻辑。
2.一些小的对比实践
Kimi:
如果尝试展示横向的流程图,由于Kimi聊天框宽度的限制,流程图的细节可能会变得模糊不清难以辨认。这种局限性可能会导致流程图中的关键信息无法被准确传达,从而影响其作为信息展示工具的有效性。为了确保流程图的清晰度和可读性,可能需要考虑其他展示方式,例如使用更大的展示区域或采用可缩放的图形格式,以便读者能够更清晰地查看和理解流程图的各个部分。
虽说各类AIGC产品都能够较好的生成MarkDown内容,然后复制到对应的工具中展示思维导图或者流程图,但是Kimi目前嵌入Mermaid之后再做好优化,还是值得期待一下。放大思维导图如果没有问题,可以使用原生Mermaid Live Editor进行查看。
Step 1: Kimi中切换成CODE模式,将CODE中的内容复制出来。
Step 2: Kimi中切换成CODE模式,将CODE中的内容复制出来。进入Mermaid Live Editor,将代码复制进去。
DeepSeek:
Step1:首先直接用DeepSeek生成文章需要的流程。
以下是一个关于《基于生成对抗网络 (GAN) 的图像超分辨率重建及其在医学图像处理中的应用》的流程图文字描述:
流程图设计:基于 GAN 的医学图像超分辨率重建流程
-
输入低分辨率医学图像
-
输入:低分辨率 MRI、CT 或 X 光图像。
-
预处理:图像归一化、去噪、裁剪等。
-
-
生成器网络(Generator)
-
输入:低分辨率图像。
-
网络结构:多尺度特征提取模块、残差块、上采样层。
-
输出:生成的高分辨率图像。
-
-
判别器网络(Discriminator)
-
输入:生成的高分辨率图像和真实高分辨率图像。
-
网络结构:卷积层、激活函数(如 LeakyReLU)、全连接层。
-
输出:判别结果(真/假)。
-
-
损失函数计算
-
对抗损失:生成器与判别器的对抗学习。
-
内容损失:基于像素级差异(如 L1/L2 损失)。
-
感知损失:基于特征空间的差异(如 VGG 网络提取的特征)。
-
总损失:加权求和上述损失。
-
-
模型训练
-
优化器:Adam 或 SGD。
-
训练策略:交替训练生成器和判别器。
-
超参数:学习率、批量大小、训练轮数。
-
-
输出高分辨率医学图像
-
输出:重建的高分辨率 MRI、CT 或 X 光图像。
-
后处理:图像增强、边缘锐化等。
-
-
医学图像处理应用
-
应用场景:临床诊断、手术规划、病灶检测等。
-
评估指标:PSNR、SSIM、LPIPS 等。
-
流程图结构
-
开始 → 输入低分辨率医学图像 → 预处理 → 生成器网络 → 生成高分辨率图像。
-
生成的高分辨率图像 → 判别器网络 → 判别结果(真/假)。
-
判别结果 → 计算对抗损失 → 更新生成器和判别器。
-
生成的高分辨率图像 → 计算内容损失和感知损失 → 更新生成器。
-
训练完成后 → 输出高分辨率医学图像 → 医学图像处理应用 → 结束。
你可以根据上述文字描述,使用流程图工具绘制图形。如果需要更详细的步骤或调整,请告诉我!
Step2:用DeepSeek生成Mermaid流程。
当然可以!以下是基于你提供的内容,使用 Mermaid 格式绘制的流程图。你可以将这段代码复制到支持 Mermaid 的工具(如 Markdown 编辑器、VS Code 插件、在线 Mermaid 编辑器等)中生成可视化流程图。
mermaid
Copy
graph TD A[开始] --> B[输入低分辨率医学图像] B --> C[预处理: 图像归一化、去噪、裁剪] C --> D[生成器网络 (Generator)] D --> E[生成高分辨率图像] E --> F[判别器网络 (Discriminator)] F --> G{判别结果: 真/假?} G -- 真 --> H[计算对抗损失] G -- 假 --> H H --> I[更新生成器和判别器] E --> J[计算内容损失和感知损失] J --> K[更新生成器] K --> L[训练完成?] L -- 是 --> M[输出高分辨率医学图像] L -- 否 --> D M --> N[医学图像处理应用: 临床诊断、手术规划、病灶检测] N --> O[评估指标: PSNR, SSIM, LPIPS] O --> P[结束]
流程图说明
-
开始:流程的起点。
-
输入低分辨率医学图像:输入需要处理的低分辨率图像。
-
预处理:对图像进行归一化、去噪和裁剪等操作。
-
生成器网络:生成高分辨率图像。
-
判别器网络:判别生成图像的真伪。
-
判别结果:判断生成图像是否接近真实高分辨率图像。
-
计算对抗损失:根据判别结果更新生成器和判别器。
-
计算内容损失和感知损失:进一步优化生成器。
-
训练完成:判断模型是否达到训练目标。
-
输出高分辨率医学图像:生成最终的高分辨率图像。
-
医学图像处理应用:将生成的图像应用于临床诊断、手术规划等场景。
-
评估指标:使用 PSNR、SSIM 等指标评估图像质量。
-
结束:流程的终点。
你可以将上述 Mermaid 代码粘贴到支持 Mermaid 的工具中,生成对应的流程图。如果需要进一步调整或优化,请随时告诉我!
Step3:将DeepSeek生成Mermaid流程Code贴。进入Mermaid Live Editor,将代码复制进去。
对比:
作为两个国产之光:
Kimi集成了Mermaid语法,并且显示上会将流程图和CODE全部展示出来,在用户体验上会更好。
DeepSeek只能生成CODE,需要将内容复制到第三方流程图工具中才可以展示。但整体流程图的复杂度感觉更高。
3.论文中严谨的实践流程
一、构建流程图
1.给出流程图所需的背景
在构建流程图的时,第一步要做的是详尽的描述流程图的需求,说明使用场景是学术论文的引言,还是理工类学术论文的实验过程,又或者是人文社科类的调研流程。
2.优化流程图的逻辑关系
我们可以根据第一步绘制一幅流程图草图,根据展示内容梳理各个步骤间的逻辑关系。包括确定步骤的先后顺序、触发条件、循环等等。
二、审查和修改流程图
1.检查流程图是否准确反映了研究过程
检查流程图节点之间的逻辑关系是否清晰。需要验证流程图中的节点逻辑是否真实的概括了学术论文中的研究过程。
2.根据反馈进行必要的修改和调整
在梳理和优化流程时,可以利用Kimi的能力来帮助改进流程图,甚至直接让他根据生成的流程图修改其中某个节点。包括重新组织步骤、调整布局等。修改过程需要反复审查和调整才能真实反映整个研究过程,这是保证高质量且学术严谨基本条件。
三、使用专业流程图工具进行效果编辑修改。
1.Microsoft Visio:一款专业的流程图绘制工具,支持丰富的模板和自定义功能。
2.Lucidchart:一款在线流程图工具,支持多人协作,操作简单。
3.Draw.io:一款免费的在线流程图工具,支持多种图形和模板,易于使用。
4.Edraw Max:一款多功能绘图工具,支持多种类型的流程图绘制。