因为要开始一个有关于机器学习的项目,所以又开始着手继续学习机器学习方面的知识,在了解这方面的知识的时候,从一个博主的博客那里,看到博主总结了一句话深感认同,借来引用下:机器学习方法是计算机利用已有的数据(经验),得出了某种模型(规律),并利用此模型预测未来的一种方法。
可能不了解机器学习的同学一看这句话会有点懵,摸不到头脑的感觉,更体会不到里面语言总结的精妙,所以我来用我们的项目实例来具体化一下这句话,用我的理解带大家来看一下:
首先我们的项目是做一个果蔬自动识别计价秤,这个也简单解释一下,就是把果蔬放到我们要做的这个称(压力传感器),就会调用它配套的摄像头,获取图像,传到PC端,调用OpenCv库,结合机器学习,自动识别果蔬种类,获取其当天的单价,就能计算其总价了。
大体上是这样的一个东西,而用我们的实例来套用那句总结行的话就是:
让计算机利用我们已经存入的数据、模型、图像,得出某种规律、果蔬的特征,并利用其来辨别要计价的果蔬的种类,从而完成目标的方法。
到这同学们想必已经理解的差不多了,通过上面的类比,可以看出机器学习与人类思考的经验过程是类似的,不过它能考虑更多的情况,执行更加复杂的计算。事实上,机器学习的一个主要目的就是把人类思考归纳经验的过程转化为计算机通过对数据的处理计算得出模型的过程。经过计算机得出的模型能够以近似于人的方式解决很多灵活复杂的问题。所以我们的辨别结果才更准确。
然后再来讲讲机器学习的范围,其实说是机器学习设计的领域更准确些。
“ 机器学习跟模式识别,统计学习,数据挖掘,语音识别处理,计算机视觉,等领域有着很深的联系。机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。”
模式识别
模式识别=机器学习。"两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。"
数据挖掘
数据挖掘=机器学习+数据库。‘’这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。"
统计学习
统计学习近似等于机器学习。"统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。"
计算机视觉
计算机视觉=图像处理+机器学习。"图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深度学习的发展,大大促进了计算机图像识别的效果,因此未来计算机视觉界的发展前景不可估量。"
语音识别
语音识别=语音处理+机器学习。"语音识别就是音频处理技术与机器学习的结合。语音识别技术一般不会单独使用,一般会结合自然语言处理的相关技术。目前的相关应用有苹果的语音助手siri等。"
自然语言处理
自然语言处理=文本处理+机器学习。"自然语言处理技术主要是让机器理解人类的语言的一门领域。在自然语言处理技术中,大量使用了编译原理相关的技术,例如词法分析,语法分析等等,除此之外,在理解这个层面,则使用了语义理解,机器学习等技术。作为唯一由人类自身创造的符号,自然语言处理一直是机器学习界不断研究的方向。按照百度机器学习专家余凯的说法“听与看,说白了就是阿猫和阿狗都会的,而只有语言才是人类独有的”。如何利用机器学习技术进行自然语言的的深度理解,一直是工业和学术界关注的焦点。"
可以看出机器学习在众多领域的外延和应用。(博客随着项目持续更新,引号内定于引自http://blog.csdn.net/lwbeyond/article/details/70177657?locationNum=4&fps=1)