懒省事的小明
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
小明很想吃果子,正好果园果子熟了。在果园里,小明已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。小明决定把所有的果子合成一堆。 因为小明比较懒,为了省力气,小明开始想点子了:
每一次合并,小明可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。小明在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以小明在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以小明总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
- 第一行输入整数N(0<N<=10)表示测试数据组数。接下来每组测试数据输入包括两行,第一行是一个整数n(1<=n<=12000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。 输出
- 每组测试数据输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。 样例输入
-
13 1 2 9
样例输出
-
15
-
输入
这道题需要用到优先队列,每次都取出最小的和次小的,然后合并,接着再把合并后的放进去,直到剩下一堆终止。需要注意的是用合并后的某个数据会超过int的储存上限。
#include <iostream>
#include <queue>
using namespace std;
struct cmp {
bool operator ()(const long long &a, const long long &b)
{
return a > b;
}
};
int main()
{
int i;
cin >> i;
while (i--)
{
int j;
int s = 0;
long long sum = 0;
priority_queue<long,vector<long long>,cmp> slong;
cin >> j;
while (s<j)
{
int d;
cin >> d;
slong.push(d);
s++;
}
if (j == 1)
cout << slong.top() << endl;
else
{
while (slong.size() != 1)
{
int l1 = slong.top();
slong.pop();
int l2 = slong.top();
slong.pop();
sum += l1 + l2;
slong.push(l1 + l2);
}
cout << sum << endl;
}
while (!slong.empty())
slong.pop();
}
return 0;
}
#include <queue>
using namespace std;
struct cmp {
bool operator ()(const long long &a, const long long &b)
{
return a > b;
}
};
int main()
{
int i;
cin >> i;
while (i--)
{
int j;
int s = 0;
long long sum = 0;
priority_queue<long,vector<long long>,cmp> slong;
cin >> j;
while (s<j)
{
int d;
cin >> d;
slong.push(d);
s++;
}
if (j == 1)
cout << slong.top() << endl;
else
{
while (slong.size() != 1)
{
int l1 = slong.top();
slong.pop();
int l2 = slong.top();
slong.pop();
sum += l1 + l2;
slong.push(l1 + l2);
}
cout << sum << endl;
}
while (!slong.empty())
slong.pop();
}
return 0;
}