4 矩阵分析

4 矩阵分析

4.1 向量范数

1.概念

向量x属于空间V,若有一种实值函数f(x)能将向量x映射为一个实数,记作f(x)=||x||,只要这个实值函数||x||满足
1)正定性: ||x|| ≥ 0
2)齐次性: ||kx|| = |k|||x||( kN
3)三角不等式: ||x+y|| ≤ ||x||+||y|| ( x,y均为V空间的向量)
那么这个函数||x||就可以用来表征向量x的大小,叫做向量x的范数。凡是满足这三个条件的的实值函数都能当做向量范数。这个有了范数的空间V也叫做赋范线性空间。

2.常用的向量范数

p-范数
向量 x=(x1,x2,...xn) , 定义向量x的p-范数为

||x||p=(i=1n|xi|p)1/p,1p+

常用的向量范数求法
||x||1 向量中所有元素的模的和
||x||2 向量中所有元素的模的平方和,再求和的平方根
||x||p 向量中所有元素的模的p次幂的和,再对和开p次方
||x|| 向量中所有元素的模的最大值

4.2 矩阵范数

1.概念

定于矩阵A的一个实函数,记作f(A)=||A||,只要这个函数||A||满足
1)正定性: || A || ≥ 0
2)齐次性: ||k A || = |k||| A ||
3)三角不等式: || A +B|| ≤ || A ||+||B||
4) 相容性: ||AB|| ≤ ||A||||B|| (乘积不等式)
此时称||A||是矩阵A的范数,如果只满足前3个条件,那只是广义矩阵范数。

2.几种常见的矩阵范数

这里写图片描述

常用的矩阵范数名称求法
||A||1 列和范数/列范数对每一列求各个元素的模的和,有n列就有n个和,再取这些和的最大值
||A|| 行和范数/行范数对每一行求各个元素的模的和,有n行就有n个和,再后取这些和的最大值
||A||2 谱范数 AHA 的所有特征值中的最大值的平方根

4.3 特征值估计

1.盖尔圆

方阵的盖尔圆所在的平面为复平面,x轴为实数,y轴为虚数,方阵的特征值只会出现在盖尔圆内。N阶方阵 A(aij) 共有n个盖尔圆,它的第i个盖尔圆以 aii 为圆心,以

Ri=|ai1|+|ai2|++|ain||aii|

为半径,即第i个盖尔圆的半径以矩阵第i行,除去对角元素的,其他所有元素的模的和。
第i个盖尔圆 Gi 的表示为
Gi={Z||Zaii|Ri},ZC

有k个孤立的盖尔圆内则至少有k个相异的特征值,相交的盖尔圆内可能有重根。

4.4 矩阵函数

1.概念

  • 矩阵函数
    如果矩阵A中的每个元素 aij(t) 都是变量t的函数,则称A(t)为矩阵函数。如果矩阵的每个元素都有极限,则这个矩阵函数也有极限。

  • 矩阵序列
    矩阵序列 A(k)m×n,kN , 共有 m×n 个元素,那么就有 m×n 组数列, 当每个数列 {aij(k)} 均分别收敛于相应的极限 aij 时,则矩阵序列{A(t)}收敛于A, 其中A由 aij 组成。

  • 谱半径
    矩阵A所有特征值的模的最大值

  • 单纯矩阵与矩阵函数
    对于可对角化的单纯矩阵而言,f(A)的特征值就是f(λ),可用来求f(A)的谱分解和谱半径

2.判断矩阵幂级数敛散性

1)考虑矩阵幂级数 A(k) , 先把矩阵A换成未知数x,计算这个数项幂级数 x(k) 的收敛半径R
2)求矩阵A的特征值,并计算其谱半径 ρ(λ) (特征值模的最大值)
3)若 ρ(λ)<R ,则矩阵幂级数绝对收敛;
ρ(λ)>R ,则发散
4)若 ρ(λ)=R ,上述方法失效,可计算A(k)的Jordan形, A(n)=P1J(k)P ,通过证明J(k)的敛散来证明A(k)的敛散,进而证明 A(k) 的敛散。
5) J(k)的每个元素都是关于n的级数,看看当n->∞时,所有元素是不是都收敛,有一个不收敛就是发散,都收敛时,A的矩阵幂级数才收敛
这里写图片描述

3.矩阵函数的计算方法

  • Jordan标准型法(不推荐)
    1)求m阶矩阵A的Jordan标准形J和可逆阵P, P1 ,使得 P1AP=J
    2)求f(J), f(J)=diag(f(J1),f(J2),f(Jm)) ,其中 f(Ji)r×r
    3) f(A)=Pf(J)P1

这里写图片描述

  • 待定系数法(推荐)
    1)求A的最小式,得到最小次的总次数degmA(λ)=k
    2)令 p(λ)=b0+b1λ+b2λ2++bk1λk1 , k是几就有几个b, b0bk1
    3)列方程组
    p(λi)=f(λi)
    λi 是2重根,则再设 p(λi)=f(λi)
    如f(A)=sinA, mA(λ)=(λ2)2(λ1) ,令 p(λ)=b0+b1λ+b2λ2 ,要满足的方程组为
    P(1)=sin1P(2)=sin2P(2)=cos2


    b0+b1+b2=sin1b0+2b1+4b2=sin2b1+4b2=cos2

4)解出 bi ,即解出了p(λ), 把p(λ)换成A就是p(A), 最后f (A)= p(A)
这里写图片描述

4.4 矩阵求导

矩阵求导包括标量,行向量 xT , 列向量x,矩阵之间的求导。

1. 矩阵Y=F(x)对标量x求导

相当于矩阵 Ym×n 中的每个元素对x求导,转化为 m×n 次普通的求导
这里写图片描述

2. 标量y对列向量x求导

相当于标量y对列向量x的每个分量求偏导,再组成一个新的列向量
这里写图片描述

3. 行向量 yT 对列向量x求导

相当于行向量 yT 的每一个分量作为标量对列向量x求导,转化为标量对列向量x求导的情况。考虑 yT=(y1,y2,yn)T,x=(x1,x2,,xm) ,则y的n个分量都对x的求导,得到n个维度为m的列向量,最后这n个列向量再组成m行n列的矩阵。
这里写图片描述

注意:
1. 1×n 的行向量对 m×1 的列向量求导后是 m×n 的矩阵。
2. 重要结论:

dxTdx=I
d(Ax)Tdx=AT

4. 列向量y对行向量 xT 求导

转化为行向量 yT 对列向量 x 的导数,然后转置。
这里写图片描述
注意
1. m×1 向量对 1×n 向量求导结果为 m×n 矩阵。
2. 重要结论:

dxdxT=(dxTdx)T=I
d(Ax)dxT=(d(Ax)Tdx)T=(AT)T=A

5. 向量积 uTv 对列向量x求导的运算法则

d(uTv)dx=d(uT)dxv+d(vT)dxu

例如:
d(xTx)dx=d(xT)dxx+d(xT)dxx=Ix+Ix=2x
d(xTAx)dx=d(xT)dxAx+d(Ax)Tdxx=IAx+ATx=(A+AT)x

6. 矩阵Y对列向量x求导

将Y对x的每一个分量求偏导,构成一个超列向量,超向量中的每个分量都是一个矩阵。转化为矩阵对标量求导的情况。
这里写图片描述
注意:矩阵对列向量求导的结果是以矩阵作为分量的超向量。

7. 矩阵Y对行向量 xT 求导

相当于Y对 xT 的每一个分量求偏导,结果是个超级行向量。

Y=F(x)dYdxT=[Fx1 Fx2  Fxn]

8.标量y对矩阵X求导

相当于标量y对矩阵X中的每个元素求导,结果是个和矩阵X行列相等的矩阵
这里写图片描述

重要结论:

d(uTXv)dX=uvT
d[(Xu)TXu]dX=2XuuT
d[(Xuv)T(Xuv)]dX=2(Xuv)uT

9. 矩阵Y对矩阵X求导

将矩阵 Ym×n 的每个元素对矩阵X求导,转化为 m×n 个标量对矩阵 Xs×r 求导,最后排起来得到 m×n 的超级矩阵,其中每个元素为 s×r 的矩阵。
矩阵对矩阵求导的结果是以矩阵作为元素的超级矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值