自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4879)
  • 收藏
  • 关注

原创 基于改进算子遗传算法的针对集成式旅行商与覆盖路径规划问题研究(Python代码实现)

遗传算法是一种模拟自然选择和遗传机制的优化算法,通过模拟生物进化过程中的选择、交叉和变异等操作,逐步搜索最优解。遗传算法的基本流程包括初始化种群、计算适应度、选择操作、交叉操作、变异操作和终止条件判断等步骤。

2025-12-23 01:22:51 31

原创 中性点不接地电网接地故障(小电流接地系统)仿真、电力系统故障研究(Simulink仿真实现)

中性点不接地系统是指电力系统中性点不与大地直接连接,而是通过线路对地电容形成电气连接。在正常运行情况下,三相电压对称,中性点电位为零。当发生单相接地故障时,故障相电压降为零,非故障相电压升高至线电压,但线电压仍保持对称。接地电流由线路对地分布电容形成,数值较小,通常无需立即跳闸,允许系统短时运行1—2小时,以便运行人员采取措施消除故障。

2025-12-23 01:21:58 47

原创 【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)

本文针对单机无穷大电力系统,重点研究了两相接地短路故障下的暂态稳定问题。通过理论分析计算系统运行参数、转移电抗、极限切除角等关键指标,并利用Matlab的m文件编程与Simulink模块搭建仿真模型,验证了极限切除时间对系统稳定性的影响。仿真结果表明,在两相接地短路故障下,极限切除时间为0.24s,及时切除故障可维持系统稳定,反之则系统失稳。研究为电力系统暂态稳定分析与控制提供了理论依据与实践参考。

2025-12-23 01:21:03 32

原创 基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)的LSTM分类预测研究(Matlab代码实现)

本文提出一种创新的元启发式优化算法——遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO),并将其应用于优化循环神经网络(LSTM)的数据分类预测任务。该算法融合了异构改进多群粒子群算法(HIDMSPSO)的异构特性与遗传算法(GA)的进化特性,通过两者的协同作用显著提升了LSTM模型在分类预测中的性能。实验结果表明,GA-HIDMSPSO-LSTM模型在测试集上展现出较高的预测准确率,且代码实现具有高质量中文注释,可直接替换数据集运行。

2025-12-23 01:20:10 58

原创 【SCI复现】电力系统储能调峰、调频模型研究(Matlab代码实现)

文献来源:摘要-我们考虑通过联合优化框架同时使用电池存储系统进行调峰和频率调节,该框架捕获电池退化、操作约束以及客户负载和调节信号的不确定性。在此框架下,我们使用真实数据显示,用户的电费可降低12%。此外,我们证明,当电池用于两个单独的应用程序时,联合优化的节省通常大于最优节省的总和。提出了一种简单的阈值实时算法,实现了这种超线性增益。与之前专注于将电池存储系统用于单一应用的工作相比,我们的结果表明,如果电池联合提供多种服务,它们可以获得比以前想象的更大的经济效益。指标术语-电池管理系统,数据中心,频率调节

2025-12-23 01:19:22 35

原创 基于AAMCWOA优化的LSTM-Adaboost时间序列预测模型研究(Matlab代码实现)

针对传统LSTM网络在时间序列预测中存在的参数调优困难、易陷入局部最优等问题,本文提出一种融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA),用于优化LSTM网络隐藏单元数与初始学习率,并结合Adaboost集成学习框架构建预测模型。实验结果表明,AAMCWOA-LSTM-Adaboost模型在电力负荷预测任务中较传统LSTM模型MSE降低58.7%,误差波动范围缩小42%,验证了该算法在复杂时序数据建模中的有效性。

2025-12-23 01:18:30 57

原创 【SOC状态估计】基于EKF和UKF电池充电状态和健康状态联合估计研究(Matlab代码实现)

电池的充电状态(SOC)和健康状态(SOH)是评估电池性能的关键指标,对保障电池安全运行、延长使用寿命及优化能量管理系统至关重要。扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)作为非线性状态估计方法,在电池状态估计领域应用广泛。本文提出基于EKF和UKF的SOC与SOH联合估计方法,通过建立电池等效电路模型,结合实时参数辨识技术,实现高精度状态估计。仿真与实验结果表明,该方法在动态工况下可有效跟踪电池状态变化,估计误差控制在3%以内,显著提升电池管理系统的可靠性与安全性。

2025-12-23 01:17:39 23

原创 风光储(风机、光伏、储能)微电网并网仿真建模Simulink

在当今能源问题日趋严峻的背景下,采用可再生能源的分布式发电技术成为未来能源发展的主要方向。然而,分布式发电技术存在电压和频率不稳定的问题,易对大电网造成冲击,导致其商业化程度较低,限制了规模化运行进程。微电网技术的提出有效改善了这一现状,能够稳定分布式发电的输出电能频率和电压,减小对大电网的冲击,同时可在孤网运行模式下保障内部基本负载的电能供应,提高供电可靠性。微电网由分布式电源和电力负荷构成,可在并网与孤岛两种模式下运行,具备高度可靠性和稳定性。

2025-12-23 01:16:45 60

原创 【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)

本文提出了一种结合变分模态分解(VMD)、麻雀搜索算法(SSA)和最小二乘支持向量机(LSSVM)的多变量负荷预测模型(VMD-SSA-LSSVM)。该模型通过VMD将原始负荷数据分解为不同频率的本征模态函数(IMF),降低数据的复杂性和非平稳性;利用SSA优化LSSVM的核函数参数和正则化参数,提高模型的预测精度;最后将各IMF分量的预测结果叠加,得到最终的负荷预测值。实验结果表明,VMD-SSA-LSSVM模型在预测精度上显著优于单一LSSVM、VMD-LSSVM和SSA-LSSVM模型。

2025-12-23 01:15:52 46

原创 并网型直驱永磁同步风力发电系统simulink仿真

并网型直驱永磁同步风力发电系统主要由风力机、永磁同步发电机、机侧变换器、直流母线、网侧变换器以及电网等部分组成。风力机将风能转换为机械能,驱动永磁同步发电机旋转,发电机输出的交流电经过机侧变换器转换为直流电,再通过直流母线传输到网侧变换器,最后由网侧变换器将直流电转换为与电网同频率、同相位的交流电并入电网。

2025-12-23 01:15:03 60

原创 【参数辨识】基于粒子群的非平稳重复过程参数辨识(跟踪)研究(Matlab代码实现)

本文聚焦于非平稳重复过程的参数辨识与跟踪问题,提出一种基于具备动态优化能力(DOP)的粒子群算法的解决方案。该算法能够实时跟踪非平稳重复过程的参数变化,当控制器增益被定义为待跟踪参数的已知函数时,可在运行过程中重新整定这些增益。通过设置标志位,可快速切换不同系统配置与粒子群更新规则。本方案受“即插式直接粒子群重复控制器”启发,适用于重复过程参数辨识、迭代学习估计、动态优化问题以及基于种群的进化优化等领域,尤其对于参数随时间变化的机器人与电力电子系统具有重要应用价值。

2025-12-22 01:21:02 179

原创 基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)

本研究通过构建数学模型,系统评估共轭转移递送CRISPR-Cas系统与噬菌体介导的CRISPR疗法对多重耐药菌(AMR)的动态抑制效果。模型整合了细菌种群竞争、水平基因转移(HGT)及CRISPR靶向剪切机制,揭示了两种疗法在降低耐药基因传播效率、恢复抗生素敏感性方面的协同作用。结果显示,噬菌体介导的CRISPR疗法在急性感染中表现出快速清除耐药菌的优势,而共轭转移递送系统在慢性感染中通过阻断HGT实现更持久的耐药性控制。研究为开发CRISPR-Cas系统在临床抗AMR中的应用提供了理论依据。

2025-12-22 01:20:10 180

原创 【空间辨识】一致模态指标与模态参与因子的随机子空间辨识研究(Matlab代码实现)

本文提出了一种基于随机子空间辨识(SSI)的模态参数估计方法,重点研究了一致模态指标(CMI)与模态参与因子的计算方法。该方法不依赖MATLAB系统辨识工具箱中的n4sid函数,通过构建Hankel矩阵并利用奇异值分解实现状态空间模型的辨识。通过数值仿真验证了算法对含噪声的2自由度系统的有效性,结果表明该方法能准确估计系统模态参数并有效评估模态质量。

2025-12-22 01:19:14 204

原创 利用 SSI-COV 算法自动识别线状结构在环境振动下的模态参数研究(Matlab代码实现)

随机子空间辨识方法是一类基于状态空间模型的时域模态识别方法,其核心思想是通过构建系统的状态空间模型,从输出数据中提取系统的模态参数。根据数据使用方式的不同,SSI方法可分为数据驱动型和协方差驱动型两类。其中,SSI-COV算法属于协方差驱动型方法,其通过计算输出数据的协方差矩阵来构建系统的状态空间模型。稳定图是SSI-COV算法应用过程中的重要工具,其横轴为模型阶次,纵轴为固有频率。在稳定图中,稳定轴表示随着模型阶次的增加,固有频率保持稳定的点集。传统方法依赖人工筛选稳定轴,主观性强且效率低下。

2025-12-22 01:18:20 184

原创 【LEA-BP】基于爱情进化算法LEA优化BP神经网络的风电功率预测研究(Matlab代码实现)

LEA算法将个人特征抽象为变量,将一个人的所有特征作为一个候选解,以幸福程度(或目标函数值)作为优化目标。算法包括刺激、价值和作用三个阶段,通过随机策略和特征更新来寻找最优解。

2025-12-22 01:17:31 196

原创 【电力系统】采用有源电力滤波器抑制谐波研究(Simulink仿真实现)

本文聚焦于有源电力滤波器(APF)在谐波抑制领域的应用,深入探讨了多种谐波辨识技术,包括瞬时有功 - 无功功率理论(p - q 理论)、同步旋转坐标系法(SRF)、直接功率控制法(DPC)、直接电流控制法(DCC)和间接电流控制法(ICC)。通过对这些辨识技术的原理、特点及应用效果的详细分析,为有源电力滤波器在谐波治理中的优化设计提供理论依据和实践参考。

2025-12-22 01:16:39 195

原创 分层模糊系统:梯度下降与递推最小二乘法联合辨识研究(Matlab代码实现)

本文提出一种基于梯度下降(GD)与递推最小二乘(RLS)联合训练的分层模糊系统(HFS)参数辨识方法。针对传统模糊系统在高维数据中存在的规则爆炸问题,HFS通过分层结构有效降低计算复杂度。研究采用GD优化非线性参数(如隶属度函数参数),RLS优化线性参数(如规则后件系数),并通过仿真验证混合算法在辨识精度和收敛速度上的优势。实验结果表明,联合算法较单一GD算法在均方误差(MSE)上降低42.3%,规则数量减少68%,显著提升系统实时性与可解释性。

2025-12-22 01:15:47 125

原创 【多微电网】计及碳排放的基于交替方向乘子法(ADMM)的多微网电能交互分布式运行策略研究(Matlab代码实现)

👨‍🎓💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。

2025-12-22 01:14:23 160

原创 【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python

TCN是一种专门用于处理时间序列数据的卷积神经网络。它通过一维卷积和因果卷积(causal convolution)来确保模型输出的每个时间步只依赖于过去的信息,从而避免了未来信息的泄露。TCN还具有残差连接(residual connections)和扩张卷积(dilated convolutions)等特性,能够捕获长期依赖关系并减少训练过程中的梯度消失问题。KAN是一种注意力机制,旨在从输入数据中提取关键信息。

2025-12-22 01:13:28 148

原创 基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)

本文针对复杂非线性系统控制中存在的参数不确定性及外部干扰问题,提出一种基于径向基函数神经网络(RBFNN)的自适应滑模控制方法。通过Simulink与S函数构建仿真平台,验证了该方法在四种典型工况下的控制性能,包括无干扰/有干扰、减弱抖振/不减弱抖振的对比实验。仿真结果表明,RBFNN能有效逼近系统干扰,自适应滑模控制显著提升了系统的跟踪精度与鲁棒性,同时通过边界层设计有效抑制了传统滑模控制的抖振现象。

2025-12-22 01:12:37 105

原创 【虚拟同步机控制建模】三相虚拟同步发电机双环控制(Simulink仿真实现)

本文聚焦三相虚拟同步发电机(VSG)双环控制策略展开研究。首先阐述了虚拟同步发电机技术产生的背景与意义,指出其在解决分布式电源高比例接入电网问题上的优势。接着详细介绍了三相虚拟同步发电机的数学模型构建,包括功率环与电压电流双环的建模过程。深入分析了双环控制参数对系统性能的影响,通过理论推导与仿真验证,揭示了参数设计的关键要点。最后通过实际案例仿真,验证了所提双环控制策略在提升系统稳定性、改善电能质量等方面的有效性,为三相虚拟同步发电机的工程应用提供了理论支持与实践参考。

2025-12-21 01:01:39 364

原创 【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)​

在动态环境下,多无人机系统的协同路径规划与防撞是确保无人机安全、高效执行任务的关键技术。本文综述了多无人机协同路径规划与防撞的研究背景、意义、关键技术、研究方法及最新进展,并提出了未来研究方向。

2025-12-21 01:00:49 218

原创 考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)

👨‍🎓💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。

2025-12-21 00:59:55 433

原创 【无功优化】基于改进遗传算法的电力系统无功优化研究【IEEE30节点】(Matlab代码实现)

简单遗传算法(Simple Genetic Algorithm,简称 SGA)是一种基于生物遗传和进化机制的自适应概率优化技术,适用于复杂系统的优化。它通过对种群中的个体进行选择、交叉和变异等遗传操作,逐步迭代搜索最优解。

2025-12-21 00:59:03 506

原创 【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)

本文采用SFE模型对产消者竞价行为建模,确立了含多产消者的新型城镇配电系统日前现货市场交易机制,建立了含竞价博弈和优化调度的双层模型。上层模型追求产消者利润最大化,可确定多个产消者在配电网内的最优报价策略,下层模型考虑运行安全约束以及用户参与DR对系统进行最优经济调度﹐确定市场出清价格。最后﹐采用改进粒子群优化算法与(CPLEX求解器相结合的方法对该多主从博弈模型进行求解。

2025-12-21 00:58:13 716

原创 【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)

为应对高比例新能源接入电网所带来的不确定性与运行挑战,本文构建了一个考虑N-1安全准则的分布鲁棒机会约束低碳经济调度模型。该模型基于IEEE 39节点系统,首先,通过均值-方差模糊集来刻画风、光出力的不确定性,并利用分布鲁棒机会约束(DRO)方法将概率性的功率平衡约束转化为确定性等效约束,在保证系统供电可靠性的同时,允许存在小概率的功率不平衡。其次,引入条件风险价值(CVaR)作为风险度量指标,对极端场景下的系统运行风险进行量化控制,并分时段设置风险参数以体现不同调度时段的风险偏好差异。

2025-12-21 00:57:23 815

原创 【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

参考文献:风光等可再生能源出力的不确定性和相关性给系统的设计带来了极大的复杂性,若忽略这些因素,势必会在系统规划阶段引入次优决策风险[24]。因此,在确定系统最佳配置方案时,必须要考虑风光出力的不确定性和相关性。Copula 函数可以描述随机变量间的相关性,是把随机变量的联合分布函数与各自的边缘分布函数相连接的函数。

2025-12-21 00:56:31 499

原创 需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)

随着电力系统峰谷负荷差异加剧和可再生能源大规模接入,动态冰蓄冷系统(Dynamic Ice Storage System, DISS)凭借其储能特性在需求响应中展现出显著优势。本文聚焦于DISS与需求响应策略的协同优化,通过建立多目标优化模型、结合模型预测控制(MPC)算法,提出一种兼顾经济性、可靠性和用户舒适度的优化策略。实验表明,该策略可降低用户用电成本15%-20%,同时平抑电网负荷波动,提升可再生能源消纳率。

2025-12-21 00:55:36 480

原创 【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)

并网逆变器序阻抗扫描阻抗建模验证扫频法正负序阻抗包含锁相环电流环。在新能源变流器逆变器阻抗扫描验证方面,我们可以进行逆变器接入弱电网的序阻抗建模与稳定性分析,同时可以设置扫描范围和扫描点数。我们的程序附带详尽的注释,确保每一行都能被轻松理解,包括阻抗建模程序和扫频程序。文档介绍仿真程序的使用方法。这是我们的升级版本,每次可扫描五个点,实测30个点只需2到5分钟左右。最后,我们还附带Nyquist奈奎斯特曲线绘制结果,为您提供全面的数据支持。采用序阻抗判定稳定性,理论分析与仿真吻合;

2025-12-21 00:54:45 556

原创 【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)

文章来源:对用户进行分类,将每一类用户的负荷叠加,为每个类建立预测模型,如图3.3所示:先采用聚类算法依据用电行为和习惯对用户进行划分,将具有相似用电习惯的用户分为同一类,同一类的用户的用电数据叠加在一起,再为每一类建立负荷预测模型。这种做法综合了上述两种策略,取长补短,既可以避免为每个用户都建立预测模型带来的问题,同时又可以加强对不同用电特性的用户的学习能力,提高预测准确性。

2025-12-21 00:53:57 896

原创 【CNN-GRU-Attention】基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测研究(Matlab代码实现)

近年来,深度学习在多个领域取得了显著的成果,其中卷积神经网络(CNN)和门控循环单元网络(GRU)是两种常用的神经网络结构。同时,注意力机制作为一种重要的机制,已经被广泛应用于自然语言处理、计算机视觉和时间序列预测等领域。本研究旨在结合CNN和GRU网络,并引入注意力机制,对多变量时间序列数据进行回归预测。首先,我们使用CNN网络对时间序列数据进行特征提取,利用卷积操作捕捉数据中的局部特征。然后,将提取的特征序列输入到GRU网络中,利用GRU网络对序列数据进行建模,捕捉数据中的长期依赖关系。

2025-12-20 00:57:31 629

原创 Matlab|基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。

2025-12-20 00:56:40 929

原创 【锂离子电池寿命】逆转锂离子电池寿命的“寒冷诅咒”研究(Matlab代码实现)

💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。

2025-12-20 00:55:48 817

原创 【GRNN-RBFNN-ILC算法】【轨迹跟踪】基于神经网络的迭代学习控制用于未知SISO非线性系统的轨迹跟踪(Matlab代码实现)

针对未知单输入单输出(SISO)非线性系统的轨迹跟踪问题,传统控制方法(如PID、模型预测控制)往往因系统非线性建模困难而效果受限。迭代学习控制(ILC)通过重复任务中的误差修正优化控制输入,但其性能依赖于系统模型的精确性。为解决这一问题,结合神经网络(NN)的数据驱动ILC方法被提出,其中广义回归神经网络(GRNN)与径向基函数神经网络(RBFNN)的结合(GRNN-RBFNN-ILC算法)展现出显著优势。

2025-12-20 00:54:58 890

原创 【EI复现】考虑灵活性的数据中心微网两阶段鲁棒规划方法(Matlab代码实现)

文献来源:随着社会对于数据计算的需求,数据中心负荷在全社会用电量的占比增长迅速。据研究报告[1]所述,我国 2020 年数据中心的用电总量占全国用电量的比例已达到 2.7%。对于大部分公司与企业,他们通常会选择将数据中心建在距离其办公场地距离较近的地方以便管理与维护。由于数据。

2025-12-20 00:54:13 840

原创 基于安时积分法,EKF,UEKF(无迹扩展卡尔曼滤波算法)估算电池SOC研究(Matlab代码实现)

锂离子电池荷电状态(SOC)的精确估计是电池管理系统(BMS)的核心功能,直接影响电动汽车续航预测、能量管理效率及电池寿命。本文针对传统安时积分法累积误差大、EKF线性化误差显著的问题,提出基于无迹扩展卡尔曼滤波(UEKF)的改进算法。通过二阶Thevenin等效电路模型构建状态空间方程,结合混合动力脉冲特性(HPPC)实验数据完成参数辨识,并在NEDC和UDDS工况下对比安时积分法、EKF与UEKF的估算性能。

2025-12-20 00:53:25 718

原创 电源题电赛单相并网离网软件硬件锁相环单极性双极性调制等代码及仿真环路计算资料+原理图PCB

本次整理的资料涵盖了单相并网离网电源题从方案设计到实现过程的多个关键方面,包括原理图、环路设计、仿真文件、程序代码以及相关参考书籍等,形成了一个较为完整的知识体系,有助于参赛者深入理解并掌握该类题目的解题思路与方法。单相锁相环:锁相环(PLL)是实现并网控制的关键技术,能够准确检测电网电压的相位和频率信息。代码中实现了单相锁相环算法,通过数字信号处理技术实现对电网电压的快速、准确跟踪,为并网电流控制提供相位参考。单双极性调制:调制技术是电力电子变换器实现电能变换的核心环节。

2025-12-20 00:52:36 788

原创 【虚拟同步机控制建模】分布式电源的虚拟同步控制 + 双环控制(Simulink仿真实现)

随着分布式电源在电力系统中的渗透率不断提高,其缺乏惯性和阻尼的问题日益凸显,对电网稳定性构成挑战。虚拟同步控制技术通过模拟同步发电机的特性,为分布式电源赋予虚拟惯量和阻尼,增强电网稳定性。双环控制则通过电压电流双闭环结构,提高系统的动态响应和稳态精度。本文深入研究了分布式电源的虚拟同步控制与双环控制策略,建立了精确的数学模型,分析了控制参数对系统性能的影响,并通过仿真和实验验证了所提控制策略的有效性。

2025-12-20 00:51:42 781

原创 【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)

以上文献从 CCS 自身以及同其他单元的耦合充分挖掘了其调节的灵活性和低碳特性,但在 CCS 与 P2G耦合的系统中忽略了电转氢过程、氢气的其他利用途径和甲烷化低效率的特点,并且均未考虑与阶梯碳交易低碳机制结合。对建立的模型线性化处理后,采用MATLAB调用CPLEX和粒子群算法进行求解,通过设置不同的情景进行对比,验证了所提模型的有效性,并分析了不同固定掺氢比、变掺氢比、不同的阶梯碳交易参数对VPP低碳性和经济性的影响。碳捕集作为一种低碳化技术,利用碳捕集技术对火电厂低碳化改造,实现高碳火电机组低碳化,

2025-12-20 00:50:53 1000

原创 【论文复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】(Matlab代码实现)

价格弹性矩阵(Price Elasticity Matrix of Demand,PEMD)是描述不同时段电价变化对其他时段用电量影响的矩阵。它反映了用户用电行为对电价变动的敏感程度,通过矩阵中的元素可以直观地看到某个时段电价变化对其他时段用电量的弹性系数。例如,矩阵中的元素 eij​ 表示时段 i 的电价变化对时段 j 用电量的弹性,即 eij​=%ΔPi​%ΔQj​​,其中 %ΔQj​ 是时段 j 用电量的变化百分比,%ΔPi​ 是时段 i 电价的变化百分比。

2025-12-20 00:50:06 728

参数辨识基于粒子群的非平稳重复过程参数辨识(跟踪)研究(Matlab代码实现)

【参数辨识】基于粒子群的非平稳重复过程参数辨识(跟踪)研究(Matlab代码实现) 内容概要:本文围绕“基于粒子群的非平稳重复过程参数辨识(跟踪)研究”展开,利用Matlab代码实现粒子群优化算法(PSO)在非平稳重复过程中的参数辨识与动态跟踪。研究重点在于应对系统参数随时间变化的挑战,通过粒子群算法的全局搜索能力,对重复过程中不断演变的参数进行实时估计与更新,提升辨识精度与收敛速度。文中结合仿真案例验证方法的有效性,展示了该算法在处理非平稳、强耦合、重复性工业过程中的优势,适用于需要在线参数估计的控制系统设计与优化。; 适合人群:具备一定Matlab编程基础,熟悉智能优化算法(如粒子群算法)和系统辨识理论的研究生、科研人员及自动化、控制工程领域的工程师;适合从事过程控制、智能制造、系统建模等相关方向的技术人员。; 使用场景及目标:①应用于非平稳动态系统的在线参数估计与状态跟踪,如化工过程、制造工艺、电机控制等重复性工业场景;②为复杂系统建模提供参数辨识解决方案,提升模型准确性;③结合Matlab仿真平台,帮助研究人员快速实现算法验证与性能对比,推动控制算法的实际落地。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解粒子群算法在参数辨识中的实现细节,重点关注适应度函数设计、参数编码方式及收敛性分析。同时可拓展学习其他智能优化算法在类似问题中的应用,以提升综合解决问题的能力。

2025-12-22

基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)

基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)内容概要:本文围绕“基于共轭转移与噬菌体介导的CRISPR系统对抗耐药菌”的生物医学工程建模研究展开,重点介绍了利用Matlab进行系统建模与仿真分析的技术路线。研究结合合成生物学与微生物基因编辑机制,构建了描述共轭转移、噬菌体感染及CRISPR-Cas系统靶向清除耐药菌的动力学模型,旨在通过数学建模手段揭示该复合系统的抗菌效率与稳定性特征。文中提供了完整的Matlab代码实现,便于复现和进一步优化,体现了理论建模与实验设计之间的桥梁作用。; 适合人群:具备一定生物信息学、系统生物学或控制工程背景,熟悉Matlab编程,从事交叉学科科研工作的研究生、青年科研人员及生物工程领域开发者。; 使用场景及目标:①用于理解并模拟CRISPR系统在微生物群体中传播与调控的动态行为;②支持抗菌策略的设计与优化,特别是在应对多重耐药菌感染方面提供理论依据;③适用于科研教学、项目原型开发及学术论文复现。; 阅读建议:建议读者结合分子生物学基础知识与Matlab编程实践同步学习,重点关注模型假设的合理性、微分方程构建逻辑及参数敏感性分析部分,以便深入掌握建模思想并灵活迁移至其他生物系统仿真任务中。

2025-12-22

空间辨识一致模态指标与模态参与因子的随机子空间辨识研究(Matlab代码实现)

【空间辨识】一致模态指标与模态参与因子的随机子空间辨识研究(Matlab代码实现)内容概要:本文围绕“一致模态指标与模态参与因子的随机子空间辨识研究”展开,重点介绍了基于Matlab的随机子空间辨识方法(SSI)在结构模态参数识别中的应用。通过SSI-COV算法实现对线状结构在环境激励下的模态参数(如频率、阻尼比、模态形状)的自动识别,并引入一致模态指标(CMIF)与模态参与因子来提升模态识别的准确性与稳定性。文中提供了完整的Matlab代码实现方案,涵盖数据预处理、协方差驱动的随机子空间辨识、稳定图构建及模态参数提取等关键步骤,有助于读者深入理解系统辨识理论及其工程实践。; 适合人群:具备一定信号处理和系统辨识基础,熟悉Matlab编程,从事结构健康监测、振动分析、模态试验等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握随机子空间辨识(SSI-COV)的基本原理与实现方法;②学习如何利用一致模态指标(CMIF)和模态参与因子提高模态识别精度;③应用于环境激励下的实际结构模态分析,如桥梁、建筑、机械系统等;④为后续的结构健康监测、损伤识别和模型修正提供可靠模态参数基础。; 阅读建议:建议结合Matlab代码逐行调试,理解各函数模块的作用,重点关注Hankel矩阵构造、奇异值分解、稳定图判据及模态参数提取过程。同时推荐配合实测振动数据进行验证,以增强对算法鲁棒性和参数敏感性的理解。

2025-12-22

利用 SSI-COV 算法自动识别线状结构在环境振动下的模态参数研究(Matlab代码实现)

利用 SSI-COV 算法自动识别线状结构在环境振动下的模态参数研究(Matlab代码实现)内容概要:本文围绕利用SSI-COV算法自动识别线状结构在环境振动下的模态参数展开研究,并提供了完整的Matlab代码实现。研究重点在于通过环境激励数据,结合随机子空间识别方法(SSI-COV),实现对结构模态参数(如频率、阻尼比、振型)的自动辨识,适用于难以施加人工激励的实际工程场景。文中详细阐述了算法原理、关键步骤(如协方差矩阵构建、投影处理、QR分解、奇异值分解、系统矩阵构造与特征值求解)以及稳定图判据的应用,旨在提升模态识别的自动化程度与准确性。; 适合人群:具备一定信号处理与结构动力学基础知识,熟悉Matlab编程,从事土木工程、机械工程、航空航天等领域结构健康监测、模态分析相关研究的研究生、科研人员及工程师。; 使用场景及目标:① 学习和掌握SSI-COV算法的基本理论与实现流程;② 实现对桥梁、高层建筑、风电塔架等线状工程结构在环境激励下的模态参数自动识别;③ 将该方法应用于结构健康监测、模型修正和损伤识别等实际科研与工程项目。; 阅读建议:建议读者结合Matlab代码逐行理解算法实现细节,重点关注协方差矩阵的构建方式、投影操作的意义以及稳定图的生成与筛选逻辑。可尝试将提供的代码应用于自己的实测或仿真数据,通过调整算法参数(如阶次范围、稳定阈值)来加深对算法性能的理解。

2025-12-22

LEA-BP基于爱情进化算法LEA优化BP神经网络的风电功率预测研究(Matlab代码实现)

【LEA-BP】基于爱情进化算法LEA优化BP神经网络的风电功率预测研究(Matlab代码实现)内容概要:本文研究了基于爱情进化算法(LEA)优化BP神经网络的风电功率预测方法,提出将LEA用于优化BP神经网络的权值和阈值,以提升模型在风电功率预测中的精度与收敛速度。通过Matlab代码实现该LEA-BP模型,并将其应用于风电功率预测场景中,实验结果表明,相较于传统BP神经网络,LEA-BP模型在预测准确性、稳定性及避免陷入局部最优方面表现更优,有效提升了风电功率预测的可靠性。; 适合人群:具备一定机器学习与智能优化算法基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的科研人员及工程技术人员。; 使用场景及目标:①应用于风电场短期或超短期功率预测,提升电网调度精度;②为智能优化算法(如LEA)在神经网络参数优化中的实际应用提供案例参考;③促进可再生能源并网系统的稳定性与经济性。; 阅读建议:建议读者结合Matlab代码实践操作,深入理解LEA算法的优化机制与BP神经网络的结构设计,重点关注参数初始化、适应度函数构建及模型性能对比分析过程,以实现对算法的有效复现与进一步改进。

2025-12-22

电力系统采用有源电力滤波器抑制谐波研究(Simulink仿真实现)

【电力系统】采用有源电力滤波器抑制谐波研究(Simulink仿真实现)内容概要:本文围绕电力系统中谐波抑制问题展开研究,重点探讨采用有源电力滤波器(APF)进行谐波治理的技术方案,并通过Simulink搭建仿真模型验证其有效性。文中介绍了有源电力滤波器的工作原理,特别是基于同步旋转坐标系(SRF)算法的电流检测方法,实现对负载谐波和无功成分的实时提取与补偿电流生成。通过构建并联型有源电力滤波器的Simulink仿真电路,展示了其在降低电网谐波含量、改善电能质量方面的实际效果。研究内容涵盖系统建模、控制策略设计与仿真分析全过程,体现了理论与实践相结合的特点。; 适合人群:电气工程、自动化及相关专业的高校师生,从事电能质量治理、电力电子与电力系统研究的科研人员及工程技术人员。; 使用场景及目标:①掌握有源电力滤波器的基本原理及其在谐波抑制中的应用;②学习基于SRF算法的谐波电流检测方法;③通过Simulink仿真实践,提升对电力系统电能质量问题分析与解决方案的设计能力。; 阅读建议:建议读者结合Simulink软件动手复现仿真模型,深入理解各模块参数设置与控制逻辑,同时可进一步拓展研究不同工况下的滤波性能,以加深对有源滤波技术的掌握。

2025-12-22

分层模糊系统:梯度下降与递推最小二乘法联合辨识研究(Matlab代码实现)

分层模糊系统:梯度下降与递推最小二乘法联合辨识研究(Matlab代码实现)

2025-12-22

多微电网计及碳排放的基于交替方向乘子法(ADMM)的多微网电能交互分布式运行策略研究(Matlab代码实现)

【多微电网】计及碳排放的基于交替方向乘子法(ADMM)的多微网电能交互分布式运行策略研究(Matlab代码实现)

2025-12-22

Pytorch基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python

【Pytorch】基于LSTM-KAN、BiLSTM-KAN、GRU-KAN、TCN-KAN、Transformer-KAN(各种KAN修改一行代码搞定)的共享单车租赁预测研究(数据可换)Python内容概要:本文介绍了基于KAN(Kolmogorov-Arnold Network)架构改进的多种深度学习模型(如M-KAN、GRU-KAN、TCN-KAN、Transformer-KAN),并应用于共享单车租赁需求的时间序列预测任务。文中强调通过仅修改一行代码即可将传统神经网络转换为KAN结构,大幅提升了模型表达能力与预测精度。研究采用Python语言实现,结合Pytorch框架,展示了不同KAN变体在共享单车数据上的预测性能,且指出该方法具有良好的通用性,适用于其他时序预测场景。同时,文章附带可替换的数据集与完整代码资源,便于复现与扩展研究。; 适合人群:具备一定Python编程基础和深度学习背景,熟悉时间序列预测任务的高校研究生、科研人员及AI算法工程师,尤其是从事交通出行、共享经济等领域预测建模的相关从业者。; 使用场景及目标:① 掌握KAN网络的基本原理及其在主流神经网络(如LSTM、GRU、Transformer等)中的集成方法;② 实现共享单车租赁量的高精度预测,支持城市交通调度与运营决策;③ 借助提供的代码框架快速迁移到其他时序预测任务(如交通流量、电力负荷等)。; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码与数据,动手实践各类KAN模型的构建与训练过程,重点关注“修改一行代码”的实现技巧,并通过对比实验理解不同模型的性能差异,进一步探索KAN在其他领域的应用潜力。

2025-12-22

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了完整的Matlab代码实现。该方法结合了RBF神经网络强大的非线性逼近能力与滑模控制的鲁棒性,用于提升控制系统在不确定性和外部干扰下的性能表现。文中详细阐述了控制策略的设计思路、RBFNN的结构与权重更新机制、自适应律的构建以及滑模面的设计过程,适用于复杂非线性系统的控制问题。同时,文档列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,展示了其在工程仿真与科研复现中的广泛应用价值。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事控制工程、电气自动化、机器人等领域的技术人员;熟悉神经网络与滑模控制的基本概念者更佳; 使用场景及目标:①学习并掌握RBFNN在自适应滑模控制中的应用原理与实现方法;②复现先进控制算法,用于学位论文、项目开发或期刊论文撰写;③拓展至风力发电、电机控制、无人机、机器人等实际系统的控制设计; 阅读建议:建议读者结合Matlab代码逐行理解算法实现细节,重点关注RBF网络的在线学习机制与控制律的推导过程,同时可参考文档中提供的其他资源链接进行扩展学习与综合应用。

2025-12-22

分层模糊系统:梯度下降与递推最小二乘法联合辨识研究(Matlab代码实现)

分层模糊系统:梯度下降与递推最小二乘法联合辨识研究(Matlab代码实现)内容概要:本文研究了分层模糊系统的参数辨识方法,提出采用梯度下降法与递推最小二乘法(RLS)相结合的混合优化策略,实现对模糊系统前件和后件参数的高效联合辨识。通过Matlab代码实现,验证了该方法在提高模型精度和收敛速度方面的有效性,适用于非线性系统建模与辨识。文中详细阐述了分层模糊系统的结构设计、参数学习机制以及两种算法的优势互补原理,并通过仿真实验展示了其在实际系统辨识中的应用效果。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事系统辨识、智能控制相关工作的工程技术人员。; 使用场景及目标:①用于非线性动态系统的建模与参数辨识;②提升模糊系统辨识精度与训练效率;③为智能控制、预测建模等提供可靠的系统模型基础; 阅读建议:建议读者结合提供的Matlab代码深入理解算法实现细节,重点关注梯度下降与递推最小二乘法的分工协作机制,并尝试在不同数据集上进行实验以掌握方法的适用边界与调参技巧。

2025-12-21

【IEEE 13 节点分配系统中的THD降低】系统的谐波分析给出了各种总线上电流和电压的谐波频谱和THD(Simulink实现)

【IEEE 13 节点分配系统中的THD降低】系统的谐波分析给出了各种总线上电流和电压的谐波频谱和THD(Simulink实现)内容概要:本文档围绕IEEE 13节点分配系统中的总谐波畸变率(THD)降低展开,通过Simulink仿真工具对系统的谐波特性进行分析,获取各总线上的电流与电压谐波频谱及其THD值。研究重点在于评估系统中存在的谐波污染程度,并通过仿真手段验证有效抑制谐波的方法,如采用有源电力滤波器等技术,从而提升电能质量。文档还展示了完整的仿真建模流程,涵盖模型搭建、参数设置、工况模拟与结果分析,体现了电力系统谐波分析的实际操作路径。; 适合人群:具备电力系统基础知识和Simulink仿真经验的电气工程专业学生、研究人员及从事电能质量分析的工程技术人员;适合从事配电网优化、谐波治理相关工作的硕士研究生或初级科研人员。; 使用场景及目标:①用于教学或科研中理解配电网谐波产生机理及THD计算方法;②指导实际工程项目中电能质量问题的诊断与治理方案设计;③为采用有源滤波器等设备进行谐波抑制提供仿真验证支持; 阅读建议:建议结合Simulink模型同步操作,重点关注谐波源建模、滤波器设计与THD评估模块的实现细节,通过修改系统参数观察谐波变化趋势,加深对电能质量控制机制的理解。

2025-12-21

Koopman遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕“Koopman”理论展开,重点研究遍历论、动态模态分解(DMD)与库普曼算子谱特性的计算方法,并提供了完整的Matlab代码实现。文章系统阐述了Koopman算子在非线性动力系统分析中的作用,结合数据驱动方法实现对复杂系统演化规律的线性化描述,涵盖理论推导、算法实现及典型算例验证,帮助读者深入理解Koopman方法的核心思想及其在动态系统建模中的应用价值。; 适合人群:具备一定动力系统、线性代数与数值计算基础,从事控制理论、信号处理、流体力学或非线性系统建模等相关领域研究的研究生、博士生及科研人员。; 使用场景及目标:①掌握Koopman算子与动态模态分解的基本原理与数学基础;②学习如何利用Matlab实现DMD与Koopman谱分析算法;③应用于非线性系统建模、模态提取、预测与控制设计等科研任务; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,配合理论部分深入理解算法流程,推荐在实际数据或经典动力系统(如Lorenz系统)上进行复现实验,以加强动手能力与理论认知。

2025-12-21

Copula考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)

【Copula】考虑风光联合出力和相关性的Copula场景生成(Matlab代码实现)内容概要:本文介绍了基于Copula理论的风光联合出力场景生成方法,重点考虑风力发电与光伏发电之间的相关性,利用Matlab代码实现场景的构建与模拟。该方法通过Copula函数捕捉风光出力的非线性相关结构,生成更加符合实际运行特性的多维随机场景,有效提升电力系统规划与调度中对新能源不确定性的处理能力。文中详细阐述了Copula模型的选择、参数估计、场景生成及缩减等关键步骤,并结合实例验证了其在提高场景代表性与计算效率方面的优势。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源并网、电力系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于新能源电力系统中风电与光伏出力不确定性建模;②支撑含高比例可再生能源的电力系统随机优化调度、可靠性评估与储能配置等研究;③帮助理解Copula在多变量随机建模中的应用机制与实现路径。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注Copula函数的选取与拟合过程,并通过实际数据进行复现实验,以加深对风光出力相关性建模的理解与掌握。

2025-12-21

HLOA-BP基于角蜥蜴算法优化BP神经网络的风电功率预测研究(Matlab代码实现)

【HLOA-BP】基于角蜥蜴算法优化BP神经网络的风电功率预测研究(Matlab代码实现)内容概要:本文研究了基于角蜥蜴优化算法(HLOA)优化BP神经网络的风电功率预测模型,并提供了Matlab代码实现。该方法利用HLOA算法优化BP神经网络的初始权重和阈值,提升网络收敛速度与预测精度,有效应对风电功率的非线性和不确定性,从而提高电力系统调度的可靠性和经济性。文中详细阐述了HLOA算法的寻优机制、BP神经网络的结构设计及二者融合的预测流程,并通过实际风电场数据验证了模型相较于传统BP、GA-BP、GWO-BP等方法在预测精度和稳定性上的优越性。; 适合人群:具备一定机器学习与智能优化算法基础,从事新能源预测、电力系统调度、人工智能应用等相关领域的科研人员及工程技术人员,尤其适合研究生及以上学历或从事相关项目开发的专业人员。; 使用场景及目标:①应用于风电场功率预测系统,提升短期与超短期功率预测准确性;②为智能电网调度、能源管理与电力市场交易提供可靠数据支持;③作为智能优化算法与神经网络结合的经典案例,用于科研复现、算法比较与教学示范。; 阅读建议:建议读者结合提供的Matlab代码,深入理解HLOA算法的实现细节与BP网络的训练过程,重点关注参数设置、优化流程与结果对比分析,鼓励在此基础上进行算法改进或迁移至光伏预测、负荷预测等相似场景进行验证与拓展。

2025-12-21

【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)​

【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)​ 内容概要:本文围绕“动态环境下多无人机系统的协同路径规划与防撞研究”展开,基于Matlab代码实现,重点探讨了在复杂、动态环境中多无人机系统如何实现高效协同路径规划与碰撞规避。研究结合智能优化算法与路径规划技术,解决了多无人机在执行任务过程中面临的环境不确定性、动态障碍物规避及相互间防撞等问题,通过仿真验证了所提方法的有效性与鲁棒性。文中提供了完整的Matlab代码实现方案,便于读者复现与进一步研究。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多无人机协同执行搜救、巡检、测绘等任务中的路径规划与安全控制;②为研究动态环境中多智能体协同与避障机制提供算法实现参考;③帮助读者掌握基于Matlab的无人机系统仿真与优化方法。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注算法设计逻辑与仿真环境构建,建议在理解基础路径规划算法(如A*、RRT)的基础上深入学习协同优化与防撞策略的实现细节。

2025-12-21

【虚拟同步机控制建模】三相虚拟同步发电机双环控制(Simulink仿真实现)

【虚拟同步机控制建模】三相虚拟同步发电机双环控制(Simulink仿真实现)内容概要:本文介绍了三相虚拟同步发电机双环控制的Simulink仿真实现,重点围绕虚拟同步机(VSG)的控制建模展开,通过构建电压外环和电流内环的双闭环控制系统,模拟同步发电机的惯性和阻尼特性,提升新能源并网系统的稳定性和动态响应能力。文中详细阐述了控制策略的设计原理、关键参数整定方法及仿真模型搭建过程,展示了系统在负载突变等工况下的电压、频率支撑性能,验证了所建模型的有效性与可行性。; 适合人群:具备电力系统、电力电子基础知识,熟悉Simulink仿真工具的电气工程专业学生、研究人员及从事新能源并网技术开发的工程师;; 使用场景及目标:①用于理解虚拟同步机的工作原理及其在逆变器控制中的应用;②为新能源发电系统中提高电网惯量支撑和频率调节能力提供仿真验证手段;③适用于微电网、储能系统等需要模拟同步机特性的场景下的控制器设计与优化; 阅读建议:建议结合Simulink模型同步操作,重点关注双环控制结构的实现细节与参数 tuning 过程,同时可延伸学习虚拟同步机在多机并联、弱电网接入等复杂场景下的控制策略。

2025-12-21

考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)

考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)内容概要:本文围绕“考虑实时市场联动的电力零售商鲁棒定价策略”展开,提出了一种基于鲁棒优化的电力零售定价模型,旨在应对电力市场中可再生能源出力不确定性及实时市场价格波动带来的风险。通过构建两阶段鲁棒优化模型,结合风光出力场景生成与负荷聚类分析,充分考虑了电力零售商在日前市场与实时市场之间的互动关系,实现了在不确定环境下的最优定价与购电决策。文中采用Matlab进行仿真验证,展示了所提策略在提升零售商利润稳定性与风险抵御能力方面的有效性。; 适合人群:具备一定电力系统基础知识和优化理论背景,熟悉Matlab编程,从事电力市场、能源管理、智能电网等相关领域研究的研究生、科研人员及行业工程师。; 使用场景及目标:①用于电力零售商在不确定性环境下制定稳健的定价与购电策略;②为电力市场风险管理、需求响应建模及新能源集成提供技术支持与仿真工具;③支撑学术研究中对鲁棒优化、场景生成、主从博弈等方法的应用与复现。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注模型构建逻辑、场景生成方法与求解算法实现,宜配合YALMIP等优化工具包进行调试与扩展,以深入理解鲁棒优化在电力市场决策中的实际应用。

2025-12-21

无功优化基于改进遗传算法的电力系统无功优化研究【IEEE30节点】(Matlab代码实现)

【无功优化】基于改进遗传算法的电力系统无功优化研究【IEEE30节点】(Matlab代码实现)

2025-12-21

EI复现基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)

【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,依托IEEE33节点系统进行建模与仿真,采用Matlab代码实现。该策略旨在解决新型电力系统中分布式能源广泛接入带来的供需博弈问题,通过构建主从博弈模型,模拟配电公司(为主方)与产消者(为从方)之间的互动竞价过程,优化资源配置与电价机制,提升系统运行效率与经济性。文中详细阐述了模型构建、算法实现及仿真结果分析,实现了对复杂博弈关系的有效求解,具有较强的工程应用价值。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的研究生、科研人员及从事智能电网、能源互联网相关领域的工程师;熟悉博弈论、优化算法者更佳。; 使用场景及目标:①用于研究含高比例分布式能源的配电系统市场机制设计;②掌握主从博弈在电力系统优化中的建模与求解方法;③复现高水平期刊(EI/SCI)论文中的算法案例,提升科研实践能力;④为产消者参与电力市场竞价提供策略支持与仿真验证工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注主从博弈的数学建模过程、KKT条件转化及双层优化求解技巧,同时可拓展学习文中提及的YALMIP工具箱与优化求解器的使用方法,以加深对整体实现流程的理解。

2025-12-21

并网型直驱永磁同步风力发电系统simulink仿真

并网型直驱永磁同步风力发电系统simulink仿真 内容概要:本文档主要围绕并网型直驱永磁同步风力发电系统(PMSG)的Simulink仿真展开,重点构建并分析该系统的动态模型,包括风力机、永磁同步发电机、变流器及其控制策略(如最大功率点跟踪MPPT、矢量控制等),实现电能并网的关键环节。仿真内容涵盖系统在不同风速条件下的运行特性、功率调节能力及并网性能,旨在验证系统设计的有效性和控制策略的可行性。; 适合人群:电气工程、自动化、新能源等相关专业的高校师生,以及从事风力发电系统设计、仿真与控制的科研人员和工程技术人员。; 使用场景及目标:①用于教学实验,帮助学生理解直驱风力发电系统的组成与工作原理;②支撑科研项目,开展新型控制算法(如非线性控制、智能控制)在风电系统中的仿真验证;③服务于工程项目前期设计,评估系统性能并优化参数配置。; 阅读建议:学习者应具备电力电子、电机控制和Matlab/Simulink仿真基础知识,建议结合理论推导与仿真操作,逐步搭建系统

2025-12-22

基于改进算子遗传算法的针对集成式旅行商与覆盖路径规划问题研究(Python代码实现)

基于改进算子遗传算法的针对集成式旅行商与覆盖路径规划问题研究(Python代码实现)内容概要:本文围绕“基于改进算子遗传算法的集成式旅行商与覆盖路径规划问题”展开研究,提出了一种改进算子的遗传算法,并结合Python代码实现,用于解决复杂的路径规划问题。研究聚焦于旅行商问题(TSP)与覆盖路径问题的集成优化,通过改进遗传算法的交叉与变异算子提升搜索效率与解的质量,有效应对路径规划中的组合优化挑战。文中详细阐述了算法设计思路、关键算子改进策略及其实验验证过程,展示了在典型测试案例中的性能表现,属于IEEE顶刊级别的研究成果复现。; 适合人群:具备一定编程基础和优化算法知识,从事智能优化、路径规划、运筹学等相关领域的研究生、科研人员及工程技术人员,尤其适合希望深入理解遗传算法改进及其在路径规划中应用的人员。; 使用场景及目标:①应用于物流配送、无人机巡检、机器人导航等需要高效路径规划的实际场景;②旨在通过算法改进提升传统遗传算法在复杂TSP及覆盖路径问题中的收敛速度与全局搜索能力,实现更优路径解的获取;③为相关科研工作提供可复现的代码基础与算法设计参考。; 阅读建议:建议读者结合提供的Python代码进行实践,重点关注遗传算法中改进算子的设计逻辑与实现细节,同时可通过调整参数和测试不同场景来加深理解,宜配合路径规划相关理论知识进行系统学习。

2025-12-22

【IEEE顶刊复现】水下机器人AUV路径规划和MPC模型预测控制跟踪控制(复现)(Matlab代码实现)

【IEEE顶刊复现】水下机器人AUV路径规划和MPC模型预测控制跟踪控制(复现)(Matlab代码实现)内容概要:本文档围绕“【IEEE顶刊复现】水下机器人AUV路径规划和MPC模型预测控制跟踪控制”展开,提供了基于Matlab的代码实现方案。重点复现了水下机器人在复杂环境中的路径规划算法与模型预测控制(MPC)相结合的技术路线,涵盖AUV的动力学建模、轨迹生成、环境约束处理及闭环跟踪控制等核心环节。通过MPC实现对期望路径的高精度跟踪,同时考虑系统动态限制与外部干扰,提升控制的鲁棒性与实时性。该资源适用于从事智能体控制、海洋工程自动化、机器人导航等领域的科研人员和技术开发者。; 适合人群:具备一定自动控制理论基础和Matlab编程能力,从事机器人控制、智能系统开发或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①复现IEEE顶刊中关于AUV路径规划与MPC控制的先进方法;②深入理解模型预测控制在非线性系统中的应用机制;③为水下无人平台的自主导航与智能控制提供可验证的仿真框架;④支持学术研究、论文复现与控制系统设计验证。; 阅读建议:建议结合Matlab代码与控制理论背景知识同步学习,重点关注状态空间建模、代价函数设计、约束处理及MPC求解过程,可通过调整参数和场景进行仿真实验,加深对控制性能影响因素的理解。

2025-12-22

电力系统单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档主要介绍了一个基于Simulink的单机无穷大电力系统在发生短路故障情况下的暂态稳定仿真模型,并附带详细的说明文档。该仿真模型用于研究电力系统在受到大扰动(如短路)后的动态行为和稳定性,帮助理解和掌握电力系统暂态稳定的基本理论与分析方法。仿真内容包括系统建模、故障设置、动态响应观测及稳定性判据分析等关键环节,适用于教学演示与科研实践。; 适合人群:电气工程及相关专业的高校师生、从事电力系统分析与仿真的研究人员以及电力行业技术人员;具备一定的电力系统基础知识和Simulink软件操作能力者更佳; 使用场景及目标:①用于电力系统暂态稳定课程的教学辅助工具,提升学生对故障响应的理解;②为科研人员提供可复现的仿真平台,支持进一步研究控制策略或稳定性改善措施;③企业技术人员可用于实际系统故障预演与方案验证; 阅读建议:建议结合电力系统暂态稳定理论知识同步学习,先熟悉Simulink建模流程,再逐步调试仿真参数,重点关注故障前后系统电压、电流、功角等关键变量的变化趋势,深入理解系统失稳机理与稳定极限。

2025-12-22

中性点不接地电网接地故障(小电流接地系统)仿真、电力系统故障研究(Simulink仿真实现)

中性点不接地电网接地故障(小电流接地系统)仿真、电力系统故障研究(Simulink仿真实现)内容概要:本文档围绕中性点不接地电网接地故障(小电流接地系统)的仿真与电力系统故障研究展开,重点介绍基于Simulink的建模仿真方法,用于分析小电流接地系统发生单相接地故障时的电气特征与故障响应。通过构建详细的电力系统模型,模拟故障条件下的电压、电流变化,帮助理解小电流接地系统的运行特性与故障检测难点。同时,文档还整合了大量电力系统相关仿真资源,涵盖微电网、谐波抑制、故障诊断、状态估计等多个方向,突出Simulink在电力系统动态仿真中的应用价值。; 适合人群:电气工程、自动化及相关专业的高校师生、电力系统研究人员及从事电网仿真与故障分析的工程技术人员。; 使用场景及目标:①掌握中性点不接地系统在单相接地故障下的运行特性;②学习利用Simulink搭建电力系统故障仿真模型;③开展小电流接地系统故障检测算法研究与验证;④拓展至微电网、谐波治理、配电网重构等相关课题的仿真分析。; 阅读建议:建议结合文中提供的Simulink模型与Matlab代码进行实践操作,重点关注故障前后系统电气量的变化规律,同时可参考文档中列出的其他电力系统仿真案例,深化对电力系统动态行为的理解。

2025-12-22

【飞机能量-机动性(E-M)特性】飞机评估的最大转弯速度(即机动速度)、最大可持续转弯速度和最大可持续载荷系数对应的真空速度(Matlab代码实现)

【飞机能量-机动性(E-M)特性】飞机评估的最大转弯速度(即机动速度)、最大可持续转弯速度和最大可持续载荷系数对应的真空速度(Matlab代码实现)内容概要:本文主要介绍了一种基于Matlab代码实现的飞机能量-机动性(E-M)特性评估方法,重点在于计算飞机在飞行过程中的最大转弯速度(即机动速度)、最大可持续转弯速度以及最大可持续载荷系数所对应的真空速度。该方法结合飞行力学模型与性能约束条件,通过编程仿真手段对飞机的机动能力进行全面分析,帮助研究人员和工程师评估飞机在不同飞行状态下的动态性能表现,适用于飞行器设计、性能优化与飞行安全评估等领域。; 适合人群:航空航天工程专业的研究人员、飞行器设计工程师、高校研究生及以上学历人员,具备一定的Matlab编程能力和飞行力学基础知识者更佳; 使用场景及目标:①用于飞机总体设计阶段的机动性能评估;②支撑飞行仿真系统开发;③支持飞行包线分析与飞行安全边界确定;④为飞行员操作手册提供理论依据; 阅读建议:建议读者结合Matlab代码与飞行力学理论同步学习,重点关注速度-载荷关系建模、约束条件设定及仿真结果的物理意义解读,有条件者可进一步扩展至多机型对比分析或引入大气扰动等复杂环境因素。

2025-12-22

复杂威胁环境下的多无人机协同路径规划研究-基于多段杜宾斯(Dubins)路径的协同策略(Matlab代码实现)

复杂威胁环境下的多无人机协同路径规划研究——基于多段杜宾斯(Dubins)路径的协同策略(Matlab代码实现)内容概要:本文围绕复杂威胁环境下的多无人机协同路径规划展开研究,提出了一种基于多段杜宾斯(Dubins)路径的协同策略,并提供了完整的Matlab代码实现。该方法结合无人机运动学约束,利用Dubins路径构建满足最小转弯半径限制的平滑轨迹,同时在复杂威胁环境下实现多机协同避障与任务分配。研究重点包括路径生成、威胁规避、协同机制设计及算法仿真验证,有效提升了多无人机系统在动态、受限空间中的自主导航能力与任务执行效率。; 适合人群:具备一定控制理论、路径规划基础,熟悉Matlab编程,从事无人机、智能交通、自动化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于军事侦察、灾害救援、区域监控等多无人机协同作业场景;②用于深入理解Dubins路径在实际系统中的建模与应用;③为多智能体协同控制、避障算法设计提供可复现的技术参考与仿真平台; 阅读建议:建议结合文中Matlab代码进行仿真实验,逐步理解Dubins路径生成原理与协同逻辑,重点关注威胁建模、路径优化与多机协调机制的设计思路,可进一步扩展至三维空间或引入通信约束进行深化研究。

2025-12-22

风光储(风机、光伏、储能)微电网并网仿真建模Simulink

风光储(风机、光伏、储能)微电网并网仿真建模Simulink内容概要:本文档围绕“风光储(风机、光伏、储能)微电网并网仿真建模Simulink”展开,重点介绍基于Simulink平台构建包含风力发电、光伏发电及储能系统的微电网并网仿真模型的技术方法。文档涵盖微电网系统建模、并网控制策略、稳定性分析、谐波抑制、状态估计、故障诊断与优化调度等多个关键技术环节,并结合MATLAB/Simulink工具实现系统仿真。同时,文档还整合了大量相关科研资源,包括RBF神经网络自适应控制、VMD信号分解、优化算法(如鲸鱼算法、粒子群算法)在微电网调度中的应用等内容,提供了丰富的代码实例与仿真案例,适用于电力系统、新能源并网、智能控制等方向的科研与教学。; 适合人群:具备一定电力系统、自动控制或新能源背景的研究生、科研人员及从事微电网仿真与优化的工程技术人员。; 使用场景及目标:①开展风光储微电网并网系统的建模仿真与性能分析;②研究微电网的能量管理、稳定性控制与故障响应机制;③进行学术论文复现、课题研究或课程设计,提升在新能源系统仿真与智能优化方面的实践能力。; 阅读建议:建议结合文中提供的网盘资源下载完整代码与模型文件,按照技术模块循序渐进学习,重点关注Simulink建模流程与MATLAB代码的协同仿真,同时参考同类研究拓展应用场景。

2025-12-22

故障诊断感应电机故障检测与诊断(Simulink)

【故障诊断】感应电机故障检测与诊断(Simulink)内容概要:本文档主要围绕基于Simulink的感应电机故障检测与诊断技术展开,结合多种先进算法如径向基函数神经网络(RBFNN)、变分模态分解(VMD)、优化算法等,实现对感应电机运行状态的监控与故障特征提取。通过构建电机仿真模型,利用信号处理与智能算法相结合的方法,完成对定子绕组、转子断条等典型故障的识别与诊断,提升电机系统的可靠性与安全性。同时,文档还涉及电力系统、信号处理、路径规划等多个领域的MATLAB/Simulink仿真案例,展示了丰富的科研应用场景和技术实现路径。; 适合人群:具备一定电气工程、自动化或控制理论基础,熟悉MATLAB/Simulink环境,从事电机控制、故障诊断、电力电子等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于高校科研教学中感应电机故障诊断方法的学习与实验验证;②为工业现场电机健康管理与预测性维护提供算法仿真与技术参考;③支撑论文复现、课题研究及工程原型开发; 阅读建议:建议结合文中提供的Simulink模型与MATLAB代码进行实践操作,重点关注故障信号特征提取、VMD参数优化与神经网络诊断模型的构建流程,同时可拓展学习文档中提及的其他智能算法在电力系统中的应用,以提升综合仿真与创新能力。

2025-12-22

TTNRBO-VMD改进牛顿-拉夫逊优化算法的变分模态分解研究-基于分解层数K与惩罚因子α的参数优化(Matlab代码实现)

TTNRBO-VMD改进牛顿-拉夫逊优化算法的变分模态分解研究——基于分解层数K与惩罚因子α的参数优化(Matlab代码实现)内容概要:本文研究了一种基于改进牛顿-拉夫逊优化算法(TNRBO)的变分模态分解(VMD)方法,重点针对VMD中的关键参数——分解层数K与惩罚因子α进行优化。通过引入径向基函数神经网络(RBFNN)实现自适应调节,提升信号分解精度与效率。该方法在Matlab平台上实现了代码构建与仿真验证,适用于非平稳信号处理,能够有效克服传统VMD参数依赖人工设定的问题,提高信号去噪和特征提取能力。; 适合人群:具备一定信号处理基础和Matlab编程经验的研究生、科研人员及从事智能算法与信号分析相关工作的工程技术人员。; 使用场景及目标:①应用于机械故障诊断、电力系统信号分析、生物医学信号处理等领域中的信号分解任务;②解决VMD中参数敏感性和人工调参难题,提升自动化水平和分解性能;③为智能优化算法与信号处理技术的融合研究提供参考案例。; 阅读建议:建议读者结合Matlab代码实践操作,深入理解TNRBO算法的优化机制与VMD参数调优过程,重点关注RBFNN在自适应控制中的作用,并可通过实际信号数据进行对比实验以验证方法有效性。

2025-12-22

基于AAMCWOA优化的LSTM-Adaboost时间序列预测模型研究(Matlab代码实现)

基于AAMCWOA优化的LSTM-Adaboost时间序列预测模型研究(Matlab代码实现)内容概要:本文研究了一种基于AAMCWOA(自适应退火与混沌鲸鱼优化算法)优化的LSTM-Adaboost时间序列预测模型,并提供了完整的Matlab代码实现。该模型结合LSTM强大的时序特征提取能力与Adaboost的集成学习优势,通过AAMCWOA算法对关键参数进行智能优化,提升预测精度与模型稳定性。文中详细阐述了模型构建流程、优化机制及实验验证过程,适用于复杂非线性时间序列的高精度预测任务。; 适合人群:具备一定机器学习与时间序列分析基础,熟悉Matlab编程,从事科研或工程应用的研究生、工程师及科研人员;尤其适合致力于预测模型优化与智能算法应用的开发者。; 使用场景及目标:①应用于风电、光伏、负荷、交通流等时间序列预测领域;②用于提升传统LSTM或Adaboost模型的预测性能;③为智能优化算法(如鲸鱼优化算法改进策略)的研究与应用提供实践参考; 阅读建议:建议结合提供的Matlab代码进行实操演练,重点关注AAMCWOA算法的实现细节及其在模型参数优化中的作用机制,可通过更换数据集进一步验证模型泛化能力。

2025-12-22

AL-SHADE-SVM分类预测:基于变体差分进化算法的SVM参数优化研究(Matlab代码实现

AL-SHADE-SVM分类预测:基于变体差分进化算法的SVM参数优化研究(Matlab代码实现内容概要:本文围绕“AL-SHADE-SVM分类预测:基于变体差分进化算法的SVM参数优化研究”展开,提出了一种结合自适应水平交叉与历史记忆机制的改进差分进化算法(AL-SHADE),用于优化支持向量机(SVM)的关键参数。通过在多个标准数据集上的实验验证,该方法能够有效提升SVM在分类任务中的准确率与泛化能力,相较于传统网格搜索或单一智能优化算法,表现出更强的全局搜索能力和收敛效率。文中详细阐述了AL-SHADE算法的演化机制、变异策略及参数自适应调整过程,并将其应用于SVM的惩罚因子C和核函数参数γ的寻优,实现了分类性能的显著改善。; 适合人群:具备一定机器学习基础,熟悉MATLAB编程,从事智能优化算法或分类模型研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决SVM等模型参数难以手动调优的问题,实现自动化参数寻优;②将先进进化算法应用于实际分类任务中,提升模型性能;③为智能优化算法与经典机器学习模型的融合提供实践案例和技术参考。; 阅读建议:建议读者结合提供的Matlab代码实现,深入理解AL-SHADE算法的核心机制与SVM参数优化流程,复现实验结果,并尝试在其他数据集或模型上进行迁移应用,进一步掌握智能优化在机器学习中的工程价值。

2025-12-22

基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)的LSTM分类预测研究(Matlab代码实现)

基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)的LSTM分类预测研究(Matlab代码实现)内容概要:本文介绍了基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)在LSTM分类预测中的研究与Matlab代码实现。该算法融合了遗传算法的全局搜索能力与改进粒子群算法的局部优化性能,通过异构策略增强种群多样性,采用动态多群结构提升算法收敛速度与鲁棒性,进而优化LSTM神经网络的关键参数,提高分类预测的准确性与稳定性。研究涵盖了算法设计、模型构建、参数调优及实验验证全过程,并提供了完整的Matlab实现代码,适用于处理复杂非线性分类问题。; 适合人群:具备一定机器学习与优化算法基础,熟悉Matlab编程,从事人工智能、数据分析、智能优化等相关领域的研究生、科研人员及工程技术人员;尤其适合致力于智能算法改进与深度学习模型优化的研究者。; 使用场景及目标:①应用于时间序列分类、模式识别、故障诊断等需要高精度分类预测的领域;②为优化算法与深度学习模型结合的研究提供技术参考;③通过代码复现与实验对比,深入理解GA-HIDMSPSO算法机制及其在LSTM参数优化中的有效性;④支持进一步算法改进与跨领域应用拓展。; 阅读建议:建议读者结合Matlab代码逐模块理解算法实现细节,重点关注GA与PSO的融合策略、动态多群机制设计及LSTM参数优化流程。建议进行参数敏感性分析与不同优化算法对比实验,以充分掌握算法性能特点。同时可尝试将该框架迁移至其他神经网络模型或实际应用场景中进行验证与优化。

2025-12-22

【AAMCWOA-RBF回归预测】AAMCWOA-RBF:一种基于自适应退火与混沌鲸鱼优化算法的混合回归预测模型研究(Matlab代码实现)

【AAMCWOA-RBF回归预测】AAMCWOA-RBF:一种基于自适应退火与混沌鲸鱼优化算法的混合回归预测模型研究(Matlab代码实现)内容概要:本文提出了一种名为AAMCWOA-RBF的混合回归预测模型,该模型将径向基函数神经网络(RBFNN)与一种结合了自适应退火机制和混沌策略的改进鲸鱼优化算法(AAMCWOA)相结合。通过AAMCWOA算法优化RBFNN的关键参数,如中心点、宽度和连接权重,以提升模型的收敛速度和预测精度。研究在多个标准数据集上进行了实验验证,并与其他优化算法(如标准WOA、GA、PSO等)进行对比,结果表明所提模型在回归预测任务中具有更优的性能表现。文中提供了完整的Matlab代码实现,便于复现和进一步研究。; 适合人群:具备一定机器学习和优化算法基础,熟悉Matlab编程,从事预测模型研究或应用的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于需要高精度回归预测的领域,如能源预测、金融分析、环境监测等;②为研究者提供一个将智能优化算法与神经网络结合的范例,用于探索新的混合预测模型架构;③通过提供的Matlab代码,帮助用户理解算法实现细节,进行算法对比实验和二次开发。; 阅读建议:在学习本资源时,应重点关注AAMCWOA算法的改进策略(自适应退火与混沌映射)如何增强WOA的全局搜索能力和避免早熟收敛,同时结合Matlab代码深入理解其与RBFNN的集成方式。建议读者动手运行代码,调整参数设置,观察不同优化算法对模型性能的影响,以加深对混合模型优势的理解。

2025-12-22

创新独家基于GA-HIDMSPSO优化K近邻(KNN)分类预测(GA-HIDMSPSO-KNN)研究(Matlab代码实现)

【创新独家】基于GA-HIDMSPSO优化K近邻(KNN)分类预测(GA-HIDMSPSO-KNN)研究(Matlab代码实现)内容概要:本文介绍了基于遗传算法辅助异构改进的动态多群粒子群优化算法(GA-HIDMSPSO)优化K近邻(KNN)分类预测模型的研究,重点在于通过GA-HIDMSPSO算法对KNN的关键参数进行智能寻优,以提升分类精度与模型性能。研究提供了完整的Matlab代码实现,涵盖了算法设计、参数优化、分类预测流程及实验验证,适用于模式识别、机器学习等领域的分类任务。该方法结合了遗传算法的全局搜索能力与改进粒子群算法的局部精细化搜索优势,有效克服传统KNN中参数选择依赖经验的问题。; 适合人群:具备一定机器学习与优化算法基础,从事科研或工程应用的研究生、科研人员及算法工程师,尤其适合关注智能优化与分类模型结合的研究者; 使用场景及目标:①用于提升KNN分类器在复杂数据集上的预测准确率;②为智能优化算法在机器学习参数调优中的应用提供实践案例;③支持科研复现、算法改进与学术论文撰写; 阅读建议:建议读者结合Matlab代码逐模块理解算法实现流程,重点关注GA-HIDMSPSO的优化机制与KNN参数调优的耦合设计,可通过更换数据集进行实验验证与性能对比,进一步掌握算法的泛化能力与调参技巧。

2025-12-22

创新首发【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究(Matlab代码实现)

【创新首发】【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究(Matlab代码实现)内容概要:本文介绍了基于改进鹈鹕优化算法(IPOA)优化支持向量机(SVM)的时序预测研究,重点在于通过改进的智能优化算法提升SVM在时间序列预测中的性能表现,并提供了完整的Matlab代码实现。该方法将IPOA用于优化SVM的关键参数,从而提高预测精度与模型泛化能力,适用于各类时序数据分析场景。研究体现了智能优化算法与经典机器学习模型结合的技术路径,具有较强的创新性和实用性。; 适合人群:具备一定机器学习和优化算法基础,熟悉Matlab编程,从事科研或工程应用的研究生、科研人员及算法工程师;尤其适合关注时序预测、智能优化算法改进与应用的研究者。; 使用场景及目标:①应用于风电、光伏、负荷、交通流等时间序列数据的预测任务;②为支持向量机参数优化提供高效的智能优化方案;③推动改进型元启发式算法(如IPOA)在实际工程问题中的验证与落地。; 阅读建议:建议读者结合Matlab代码深入理解IPOA算法的改进机制及其与SVM的集成方式,重点关注参数优化流程与预测性能评估部分,可尝试在其他数据集上复现并拓展该模型,进一步探究算法鲁棒性与通用性。

2025-12-22

SCI级别多策略改进鲸鱼优化算法(HHWOA)和鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30寻优对比

【SCI级别】多策略改进鲸鱼优化算法(HHWOA)和鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30寻优对比内容概要:本文主要介绍了多策略改进鲸鱼优化算法(HHWOA)与基本鲸鱼优化算法(WOA)在CEC2017测试集的30个基准函数(F1-F30)上的寻优性能对比研究。通过在Matlab环境中实现两种算法,对不同类型的优化问题(如单峰、多峰、混合和复合函数)进行实验测试,旨在验证HHWOA在收敛精度、收敛速度及全局搜索能力方面的优越性。文中强调了多策略改进(如混沌初始化、自适应参数调整、精英反向学习等)对提升算法性能的关键作用,并提供了详细的实验设置、对比结果分析与可视化图表,展示了HHWOA相较于WOA在避免早熟收敛和提高优化效率方面的显著优势。; 适合人群:具备一定优化算法理论基础和Matlab编程能力的研究生、科研人员及从事智能优化算法研究与应用的工程技术人员,尤其适合关注群智能优化算法改进与性能评估的研究者。; 使用场景及目标:① 学习和掌握鲸鱼优化算法的基本原理及其改进策略的设计思路;② 在CEC标准测试集上开展优化算法性能对比实验,评估新算法的有效性;③ 将HHWOA应用于实际工程优化问题,如参数辨识、路径规划、电力系统调度等需要全局优化的场景。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注多策略改进模块的设计与作用机制,复现实验结果并尝试在其他测试函数或实际问题中应用该算法,以加深对其性能特征的理解。

2025-12-22

创新首发【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究(Matlab代码实现)

【创新首发】【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究(Matlab代码实现)

2025-12-22

基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)

基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)内容概要:本文介绍了基于扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计方法,并提供了相应的Matlab代码实现。文中详细阐述了两种滤波算法在处理非线性系统状态估计问题中的原理与应用,重点比较了它们在电力系统动态环境下的估计精度、收敛性和鲁棒性。通过仿真实验验证了EKF与UKF在不同工况下的性能表现,展示了其在实际电力系统状态估计中的可行性与有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事电力系统自动化、智能电网等相关领域的工程技术人员。; 使用场景及目标:①用于电力系统实时状态监测与故障诊断;②支持高级能量管理系统(EMS)中的数据融合与预测控制;③为学术研究提供EKF与UKF算法在非线性状态估计中的对比分析案例; 阅读建议:建议读者结合Matlab代码进行仿真实践,深入理解EKF与UKF的算法差异及其在电力系统建模中的具体实现步骤,同时可拓展至其他非线性滤波方法的研究与应用。

2025-12-22

【PFJSP问题】基于吕佩尔狐算法RFO求解置换流水车间调度问题PFSP研究(Matlab代码实现)

【PFJSP问题】基于吕佩尔狐算法RFO求解置换流水车间调度问题PFSP研究(Matlab代码实现)内容概要:本文介绍了基于吕佩尔狐算法(RFO)求解置换流水车间调度问题(PFSP)的研究,重点在于利用RFO这一智能优化算法解决生产制造中的复杂调度难题。文中详细阐述了PFSP问题的背景与挑战,并展示了如何通过Matlab代码实现RFO算法对调度方案进行优化,以最小化最大完工时间等目标函数。研究还可能涉及与其他经典算法的性能对比,验证RFO在收敛速度和求解质量方面的优势。此外,文档所属系列涵盖多个科研方向,突出团队在智能优化算法、车间调度及MATLAB仿真方面的技术积累与服务能力。; 适合人群:具备一定编程基础和运筹优化知识的研究生、科研人员及从事智能制造、生产调度相关工作的工程技术人员。; 使用场景及目标:①学习并掌握智能优化算法(如RFO)在车间调度中的应用;②理解置换流水车间调度问题(PFSP)的建模与求解流程;③借助Matlab实现算法复现与性能测试,服务于学术研究或实际生产调度系统开发; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注算法设计细节与调度模型构建逻辑,同时可参考文档中提及的相关案例与技术扩展方向,提升综合应用能力。

2025-12-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除