- 博客(14)
- 收藏
- 关注
原创 Python使用tkinter开发一个简单的参数计算软件模板,可用于设计估算,制造业算料,各种包含参数变量的简单计算
最近在制造业转了一圈,发现很多传统制造业在设计或者加工下料过程中,需要根据一些固定参数和现场实际的变量,去估算出设计的范围值或者所需要的材料用量。这种计算当然都会有固定的参数和变量组成的公式,但是现场的计算方式感人,要么用计算机疯狂按,要么用Excele表格公式。作为一名善于发现问题、简化问题、解决问题(其实是强迫症)的程序员,感觉有必要给个软件。于是花了一小会开发这个计算软件,使用的python tk搭建的简单框架,技术含量并不高,但能解决问题。...
2022-08-18 10:50:02 739 1
原创 使用opencv.js分类器和hbuilderx开发一个分类器app
很多二分类的图像识别任务不用想着立马上神经网络,可以用简单的级联分类器解决。
2022-08-17 20:44:06 1507
原创 Opencv.js+Hbuilder快速打造一个图像处理App
不少人吐槽Hbuilder的生态不好,但个人觉得它上手比较简单,可以快速的搭建一个简单的app或者小程序demo。其次最主要的是opencv.js,之前做深度学习和写图像算法的时候,习惯了使用opencv-python去处理图片数据集,偶然看到了opencv.js版本,刚好有个项目要部署到移动端,就尝试将该使用js版本的opencv去读取神经网络模型,同时完成预测,opencv.js原生的读取方法没有试过,后来是使用onnx.js完成模型读取,opencv.js获取视频流去实现的。......
2022-08-14 16:33:02 1890
原创 keras搭建神经网络
Keras是一个神经网络开发的高级API,用Python编写,底层调用神经网络开发库TensorFlow、CNTK或Theano。Keras的目标是简化神经网络应用开发过程,快速实现想法。Keras 后端Keras 是一个模型级库,为开发深度学习模型提供了高层次的构建模块。它不处理诸如张量乘积和卷积等低级操作。相反,它依赖于一个专门的、优化的张量操作库来完成这个操作,它可以作为 Keras 的「后端引擎」。相比单独地选择一个张量库,而将 Keras 的实现与该库相关联,Keras 以模块方式处理这
2020-10-21 13:24:40 2518 2
原创 sklearn加载查看数据集
Scikit-learn(sklearn)的定位是通用机器学习库一般使用SciKit-Learn来加载数据集。数据集的来源,通常有2个:自己准备第三方处获取:SciKit-Learn是SciKit库的一部分,SciKit意思是SciPy Tookits,名字来源于SciPy库,SciKit基于SciPy库构建,除了SciKit-Learn,还包含其他很多模块。SciKit-Learn库是专注于机器学习和数据挖掘的模块。SciKit-Learn库中也自带一些数据集,我们可以尝试加载。先从sk
2020-10-21 13:13:31 5284
原创 Scipy线性代数、图像处理
Scipy线性代数计算Scipy有ATLAS LAPACK和BLAS库构建的线性代数计算包,可以高效的进行线性代数的计算。线性代数包里的函数,操作对象都是二维数组。SciPy.linalg 与 NumPy.linalg与NumPy.linalg相比,scipy.linalg除了包含numpy.linalg中的所有函数,还具有numpy.linalg中没有的高级功能。一方面scipy.linalg 包含 numpy.linalg 中的所有函数,同时还包含了很多 numpy.linalg 中没有的函
2020-10-21 11:53:38 1213
转载 Pandas学习(3)DataFream操作2
分组(Grouping),适用于有重复数据可统计、可分组的DataFrame“group by” 指的是涵盖下列一项或多项步骤的处理流程:分割:按条件把数据分割成多组;应用:为每组单独应用函数;组合:将处理结果组合成一个数据结构。import numpy as npimport pandas as pddf = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'fo
2020-10-19 16:26:53 321
原创 python简单学习大纲
数据类型Number(数字)String(字符串)List(列表)Tuple(元组)Set(集合)Dictionary(字典)六个标准数据类型中:不可变数据(3 个):Number(数字)、String(字符串)、Tuple(元组);可变数据(3 个):List(列表)、Dictionary(字典)、Set(集合)。list列表的一些重要方法list.append(x) 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。list.extend(L) 通过添加指定列
2020-10-19 09:45:27 330
原创 Numpy的Matplotlib可视化
matplotlib最重要的plot()函数,调用方法plt.plot(x, y, format_string, **kwargs)参数值:#x : X轴数据,列表或数组#y : Y轴数据,列表或数组#format_string : 控制曲线的格式字符串,可选:#**kwargs :第二组或更多(x,y,format_string)其中要说明的是format_string,包含的主要类型有颜色字符:‘b’,‘k’,‘g’代表各种颜色缩写风格字符:’-’,’–‘等标记字符:每个数据点的标
2020-10-16 23:22:10 658
原创 Pandas学习(3)DataFrame操作1
import numpy as npimport pandas as pd#创建一个时间DataFramed=pd.DataFrame(np.random.randint(1,24,size=(6,4)), index=pd.date_range("19980102",periods=6), columns=["a","b","c","d"])print(d) a b c d1998-01-02
2020-10-15 15:06:32 791
原创 Pandas学习(2)Pandas创建DataFrame
DataFrameDataFrame 是由多种类型的列构成的二维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典。DataFrame 是最常用的 Pandas 对象,与 Series 一样,DataFrame 支持多种类型的输入数据:1、一维 ndarray、列表、字典、Series 字典2、二维 numpy.ndarray3、结构多维数组或记录多维数组4、Series5、DataFrameimport numpy as npimport pandas as
2020-10-14 22:35:05 700
原创 Pandas学习(1)Pandas创建Series
Pandas概况:Pandas是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas是Python 数据分析实践与实战的必备高级工具。Pandas 适用于处理以下类型的数据:与SQL或Excel 表类似的,含异构列的表格数据;有序和无序(非固定频率)的时间序列数据;带行列标签的矩阵数据,包括同构或异构型数据;任意其它形式的观测、统计数据集, 数据转入 Pandas 数据结构时不必事先标记。数据结构:Pandas 的主要数据
2020-10-14 15:52:58 637
原创 Numpy学习(1)numpy创建数组
一、numpy创建数组的几种主要方法1、array()函数-自由创建+reshape()方法#可通过列表如[1,2,3,4],元组如(1,2,3,4)创建 import numpy as np# 一维x=np.array([1,2,3,4])# 二维y=np.array([1,2,3,4]).reshape(2,2)# y=np.array([[1,2],[3,4]])同样可以#三维z=np.array([1,2,3,4,5,6,7,8]).reshape(2,2,2)#z=np.arra
2020-10-14 11:24:49 1325
原创 Numpy学习(2)numpy向量化、numpy操作
1、Numpy创建向量Numpy创建的数组有时也称为向量,但要注意两者的区别,需要注意数组的秩。Numpy使用了优化的C api,运算速度快,在深度学习需要运用numpy向量化加快运算速度,NumPy底层用C语言编写,内部解除了GIL(全局解释性锁),其对数组的操作速度不受python解释器的限制,效率远高于纯python代码。原因是Numpy数组由相同种类数据类型的元素组成,可以快速确定存储空间。对整组数据进行快速运算的标准数学函数库,无需编写循环,即内置并行运算功能,当系统进行某种计算时,并且有
2020-10-14 09:43:36 2861 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人