一、AI的广泛应用与定义
- AI的无处不在:AI已经渗透到金融、制造、消费、医疗、教育、交通等多个行业,如人脸识别、语音识别、自动驾驶、商品推荐等。
- AI的定义:AI是以数学、统计学为基础理论的工程实践,通过从数据中挖掘规律并预测结果。它大致可分为机器学习和知识推理,其中机器学习又包括监督学习、非监督学习和强化学习。
二、机器学习基础
-
训练与推理过程:包括数据收集与预处理、模型选择、定义模型好坏(损失函数)、寻找最佳函数(参数优化)和模型推理。
-
AI三要素:数据、算法和算力。数据是知识源头,算法决定模型效果,算力支持暴力计算。
-
监督学习:使用标注数据训练模型,分为回归问题(预测连续值)和分类问题(预测离散值)。
-
损失函数与梯度下降:损失函数衡量模型预测值与实际值的差异,梯度下降通过迭代优化参数以最小化损失函数。
三、深度学习与神经网络
- 神经网络的由来:模仿大脑神经元结构,由输入层、隐藏层和输出层组成,通过激活函数引入非线性。
- 卷积神经网络(CNN):用于图像处理,提取图像的空间特征,如平移不变性和局部相关性。
- 经典CNN架构:如LeNet、AlexNet等,通过卷积、激活、池化和全连接层构建。
- 动手实践:介绍了如何在云上搭建深度学习开发环境,并构建自己的神经网络。
四、AIGC与大模型
- AIGC的惊喜:大语言模型(LLM)在文本摘要、智能问答、文本转换等任务上表现出色,推动了AIGC的发展。
- LLM的挑战:存在“知识茧房”问题,即模型知识局限于训练数据,缺乏对新知识的理解。
- RAG方法:通过检索增强生成,结合知识库和LLM,解决LLM的知识局限性。
- 知识库构建:将私域数据加工成知识库,通过文本分割、向量化等步骤,存储到向量数据库中。
- Langchain框架:实现了知识库+LLM的完整方案,支持文档导入、文本处理、向量检索等功能。
五、AI技术融入产品
- 产业界与学术界的探索:产业界持续探索AI应用新领域,学术界则在模式识别、机器学习、NLP等领域深入研究。
- AI落地三问:
- 场景:明确AI要解决的问题,判断其是否适合使用AI。
- 数据:确保有高质量的标注数据用于训练。
- 算法&算力:具备高水平的研发团队和充足的算力资源。