AI机器学习到大模型LLM


一、AI的广泛应用与定义

  • AI的无处不在:AI已经渗透到金融、制造、消费、医疗、教育、交通等多个行业,如人脸识别、语音识别、自动驾驶、商品推荐等。
  • AI的定义:AI是以数学、统计学为基础理论的工程实践,通过从数据中挖掘规律并预测结果。它大致可分为机器学习和知识推理,其中机器学习又包括监督学习、非监督学习和强化学习。

二、机器学习基础

  • 训练与推理过程:包括数据收集与预处理、模型选择、定义模型好坏(损失函数)、寻找最佳函数(参数优化)和模型推理。
    在这里插入图片描述

  • AI三要素:数据、算法和算力。数据是知识源头,算法决定模型效果,算力支持暴力计算。

  • 监督学习:使用标注数据训练模型,分为回归问题(预测连续值)和分类问题(预测离散值)。

  • 损失函数与梯度下降:损失函数衡量模型预测值与实际值的差异,梯度下降通过迭代优化参数以最小化损失函数。
    在这里插入图片描述

三、深度学习与神经网络

  • 神经网络的由来:模仿大脑神经元结构,由输入层、隐藏层和输出层组成,通过激活函数引入非线性。
  • 卷积神经网络(CNN):用于图像处理,提取图像的空间特征,如平移不变性和局部相关性。
  • 经典CNN架构:如LeNet、AlexNet等,通过卷积、激活、池化和全连接层构建。
  • 动手实践:介绍了如何在云上搭建深度学习开发环境,并构建自己的神经网络。
    在这里插入图片描述
    在这里插入图片描述

四、AIGC与大模型

  • AIGC的惊喜:大语言模型(LLM)在文本摘要、智能问答、文本转换等任务上表现出色,推动了AIGC的发展。
  • LLM的挑战:存在“知识茧房”问题,即模型知识局限于训练数据,缺乏对新知识的理解。
  • RAG方法:通过检索增强生成,结合知识库和LLM,解决LLM的知识局限性。
  • 知识库构建:将私域数据加工成知识库,通过文本分割、向量化等步骤,存储到向量数据库中。
  • Langchain框架:实现了知识库+LLM的完整方案,支持文档导入、文本处理、向量检索等功能。在这里插入图片描述

在这里插入图片描述

五、AI技术融入产品

  • 产业界与学术界的探索:产业界持续探索AI应用新领域,学术界则在模式识别、机器学习、NLP等领域深入研究。
  • AI落地三问
    1. 场景:明确AI要解决的问题,判断其是否适合使用AI。
    2. 数据:确保有高质量的标注数据用于训练。
    3. 算法&算力:具备高水平的研发团队和充足的算力资源。
      在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值