【Person Re-ID】GLAD: Global-Local-Alignment Descriptor for Pedestrian Retrieval

GLAD是一种用于行人检索的全局-局部对齐描述符,通过Deeper Cut算法提取人体部位,使用共享CNN子网络学习全局和局部特征。实验表明,GLAD在部件检测的准确性和鲁棒性之间取得平衡,且共享参数训练的模型性能更优。
摘要由CSDN通过智能技术生成

paper下载地址:https://arxiv.org/abs/1709.04329

Introduction

Person Re-ID任务是为了从gallery集中找到与query集中同一个人的图像。应用场景主要集中在视频监控、公共安全等领域,因此一个人的外表可能被摄像头的视角,人体姿态,模糊,遮挡等因素所影响,给此项任务带来挑战。大多数Re-ID工作都可以分为两步,即描述子学习距离度量学习

描述子学习:通过学习具有判别性的描述子来表征不同人的外表。
距离度量学习:使得属于同一个人的图像的描述子之间的距离更近。

传统的描述子学习方法通常提取刚性的局部不变特征,因此人体姿态的改变,摄像头视角的改变都能影响其性能,导致不能很好的识别一个人。而大多数基于CNN的方法通过学习全局特征取得了明显的改善,而最近工作将行人图像分成固定长度的块,通过学习更加精细的局部特征,这些方法要比全局描述子性能更加优秀。然而固定长度的块对人体姿态的变化非常敏感,为了解决这个问题,文章提出了Global-Local-Alignment Descriptor (GLAD)。

Approach

GLAD包含两个模块:

  • 部件提取&#
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值