paper下载地址:https://arxiv.org/abs/1709.04329
Introduction
Person Re-ID任务是为了从gallery集中找到与query集中同一个人的图像。应用场景主要集中在视频监控、公共安全等领域,因此一个人的外表可能被摄像头的视角,人体姿态,模糊,遮挡等因素所影响,给此项任务带来挑战。大多数Re-ID工作都可以分为两步,即描述子学习和距离度量学习。
描述子学习:通过学习具有判别性的描述子来表征不同人的外表。
距离度量学习:使得属于同一个人的图像的描述子之间的距离更近。
传统的描述子学习方法通常提取刚性的局部不变特征,因此人体姿态的改变,摄像头视角的改变都能影响其性能,导致不能很好的识别一个人。而大多数基于CNN的方法通过学习全局特征取得了明显的改善,而最近工作将行人图像分成固定长度的块,通过学习更加精细的局部特征,这些方法要比全局描述子性能更加优秀。然而固定长度的块对人体姿态的变化非常敏感,为了解决这个问题,文章提出了Global-Local-Alignment Descriptor (GLAD)。
Approach
GLAD包含两个模块:
- 部件提取&#