基础练习 Huffuman树
时间限制:1.0s 内存限制:512.0MB
问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
实现代码
import java.util.Scanner;
import java.util.Arrays;
public class Main {
// 这题考的是贪心算法
static Scanner s = new Scanner(System.in);
public static void main(String[] args) {
int n = s.nextInt();
if (n < 0 || n > 100) {
return;
}
int[] nums = new int[n]; // 录入的n个数据
int cost = 0; // cost
for (int i = 0; i < n; i++) {
nums[i] = s.nextInt();
}
int i = 0;
while (i + 1 < nums.length) {
Arrays.sort(nums); // 首先对nums进行排序(升序)处理
int temp = nums[i] + nums[i + 1]; // 首先记录这个最小值
nums[i + 1] = temp; // 替换掉i+1个元素
cost += temp; // 记录下这个值
nums = Arrays.copyOfRange(nums, i + 1, nums.length); // 然后删除掉第i个元素
}
System.out.println(cost);
}
}
算法思路
- 这题的思路,如果按照题目给的提示性文字进行做的话,比较复杂。但是如果对数组进行排序之后就简单多了
- 首先对录入的数据进行排序,然后取前2个数字相加,然后再替换掉后一个元素(即用nums[0]+nums[1]的结果替换nums[1]的位置,然后再把数组从1到最后一个截取,以此重复),到i+1>nums.length位置
注:本人一向相信一个观念——不加注释的程序,不叫程序。如果大伙感兴趣的话,可以跟我一起交流