N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000) 第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14 1 2 4 2 3 8 3 4 7 4 5 9 5 6 10 6 7 2 7 8 1 8 9 7 2 8 11 3 9 2 7 9 6 3 6 4 4 6 14 1 8 8
Output示例
37
#include <bits/stdc++.h>
#define rep(i,a,n) for(int i=a;i<n;i++)
using namespace std;
int n, m, f[1005]={0};
struct Edge {
int st, ed, v;
void read() {cin >> st >> ed >> v;}
// Edge(int _st = 0, int _ed = 0, int _v = 0) : st(_st), ed(_ed), v(_v) {}
friend bool operator < (const Edge &a, const Edge &b) {
return a.v < b.v;
}
}E[50050];
int find(int a) {return f[a] == a ? a : f[a] = find(f[a]);}
void setMap() {
cin >> n >> m;
rep (i, 0, n + 1) f[i] = i;
rep (i, 0, m) E[i].read();
sort (E, E + m);
}
int main(void) {
setMap();
int ans = 0, k = n;
rep (i, 0, m) {
int f1 = find(E[i].st);
int f2 = find(E[i].ed);
if (f1 != f2) {
f[f2] = f1;
ans += E[i].v;
k--;
if(k == 1) break;
}
}
cout << ans << endl;
return 0;
}