51Nod 1019 逆序数

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。给出一个整数序列,求该序列的逆序数。
Input
第1行:N,N为序列的长度(n <= 50000)
第2 - N + 1行:序列中的元素(0 <= A[i] <= 10^9)
Output
输出逆序数
Input示例
4
2
4
3
1
Output示例
4

思路: 这题可以用归并排序或树状数组做,

但upper_bound,和 insert 也能过。

惊喜的是居然这组  50000,149999~100000 降序输入的数据上(5w的规模,每次插入都在头前) 

50000^2/2 大概1.25×10^9我以为会超1秒, 居然跑300~400ms,好意外。 留个知乎的帖

https://www.zhihu.com/question/57723376?from=profile_question_card

code :

#include <bits/stdc++.h>
using namespace std;
#define all(x) (x).begin(),(x).end()
#define rep(i,n) for(int i=0;i<n;i++)
typedef long long LL;
vector<int> v;
int main(void) {
    LL a, ans = 0, n = (cin>> n, n);
    rep(i, n) {
        ans += v.end() - upper_bound(all(v), (cin >> a, a));
        v.insert(upper_bound(all(v), a), a);
    }
    cout << ans << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值