在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。给出一个整数序列,求该序列的逆序数。
Input
第1行:N,N为序列的长度(n <= 50000) 第2 - N + 1行:序列中的元素(0 <= A[i] <= 10^9)
Output
输出逆序数
Input示例
4 2 4 3 1
Output示例
4
思路: 这题可以用归并排序或树状数组做,
但upper_bound,和 insert 也能过。
惊喜的是居然这组 50000,149999~100000 降序输入的数据上(5w的规模,每次插入都在头前)
50000^2/2 大概1.25×10^9我以为会超1秒, 居然跑300~400ms,好意外。 留个知乎的帖
https://www.zhihu.com/question/57723376?from=profile_question_card
code :
#include <bits/stdc++.h>
using namespace std;
#define all(x) (x).begin(),(x).end()
#define rep(i,n) for(int i=0;i<n;i++)
typedef long long LL;
vector<int> v;
int main(void) {
LL a, ans = 0, n = (cin>> n, n);
rep(i, n) {
ans += v.end() - upper_bound(all(v), (cin >> a, a));
v.insert(upper_bound(all(v), a), a);
}
cout << ans << endl;
return 0;
}