排序:
默认
按更新时间
按访问量

博客写的时候很多内容由于图片问题会省略

github地址 https://github.com/lytforgood

2016-06-16 16:41:54

阅读数:518

评论数:0

tflearn学习笔记01

tflearn学习笔记 常见函数解释 tflearn.fully_connected 全连接层 flatten 使传入的张量变平 池化层/降采样层:Pooling Layer 标准化层(Normalization Layer): Batch Normalization解...

2018-03-27 10:30:53

阅读数:106

评论数:0

mac os环境下安装lightgbm失败 解决方法

问题 使用官方github的安装方法,在cmake地方编译不通过 解决 已安装过Cmake,保证cmake版本要3.8以上,通用–更新cmake版本 gcc版本有问题,原mac os 因为其他项目下载过gcc-6 使用gcc-6 编译lighgbm时cmake ..替换为如下命令 ...

2018-03-16 08:41:15

阅读数:246

评论数:1

sklearn数据切分及交叉验证笔记

数据切分 方法1 随机切分 from sklearn.model_selection import train_test_split iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_spli...

2018-01-25 17:33:07

阅读数:409

评论数:0

自然语言处理学习笔记之中文文本分类

1. 中文处理的编码问题 中文的编码不是utf8,而是unicode Python 会自动的先将解码,然后再编码 Python2.7默认编码是 ANSCII Python3 默认编码是 Unicode Python2.7解决中文乱码: 1). 文件开头 #encoding:ut...

2018-01-25 11:32:48

阅读数:479

评论数:0

深度学习之LSTM实现

LSTM之keras实现 TensorFlow之LSTM LSTM之keras实现 import numpy as np np.random.seed(2017) #为了复现 from __future__ import print_function from keras....

2017-09-15 15:38:52

阅读数:3444

评论数:2

深度学习之CNN实现

CNN 实现 CNN相比与传统神经网络,主要区别是引入了卷积层和池化层 卷积是使用tf.nn.conv2d, 池化使用tf.nn.max_pool CNN之keras实现 import numpy as np np.random.seed(2017) #为了复现 from __f...

2017-09-11 20:45:23

阅读数:382

评论数:0

神经网络之keras/tf框架实现

Keras实现神经网络 import numpy as np np.random.seed(2017) #为了复现 from keras.datasets import mnist from keras.utils import np_utils from keras.models imp...

2017-09-11 15:08:04

阅读数:359

评论数:0

Tensorflow学习笔记

Tensorflow学习笔记 参考 知乎 莫烦 Tensorflow 安装 # python 2+ 的用户: $ pip install tensorflow # python 3+ 的用户: $ pip3 install tensorflow 更新 # 如果你是 P...

2017-09-05 20:19:34

阅读数:1338

评论数:0

深度学习之keras使用

深度学习之keras使用keras安装 安装Numpy、Scipy等科学计算库 安装theano、tensorflow eg:CPU版tensorflow pip install tensorflow pip install keras 修改Backend底层框架Theano或者Tensorflo...

2017-09-05 20:17:30

阅读数:1108

评论数:0

神经网络之python实现

神经网络之python实现 #初始化w b 输入为 [每层的size] eg: [4,5,2] 输入层为4 隐藏层为 5 输出层为 2 def initwb(sizes): num_layers_ = len(sizes) #层数 w_ = [np.random.randn(y,...

2017-09-05 16:26:30

阅读数:303

评论数:0

相似URL判定及字符串相似度距离

相似URL判定edit distance缺点 基于结构来判断URL相似度,去掉数字。字符串是否也需要去掉自身只保留结构,或者保留存在长度的结构,可以根据情况来灵活取舍。抽象一下特征 1、站点特征:如果两个url站点一样,则特征取值1,否则取值0; 2、目录深度特征:特征取值分别是两个url的目...

2017-08-28 08:29:41

阅读数:892

评论数:0

spark线上环境问题总结

编译xgboost4j-on-spark的坑 下载源码 git clone –recursive https://github.com/dmlc/xgboost 必须下载依赖 gcc –version 版本必须4.6以上 cd jvm-packages mvn -Dspark.version...

2017-06-28 13:26:40

阅读数:334

评论数:0

Word2vec原理与应用

用一个普通的向量表示一个词,将所有这些向量放在一起形成一个词向量空间,而每一向量则为该空间中的一个点,在这个空间上的词向量之间的距离度量也可以表示对应的两个词之间的“距离”。所谓两个词之间的“距离”,就是这两个词之间的语法,语义之间的相似性。 只介绍基于Hierarchical Softmax的...

2017-03-22 10:59:10

阅读数:1481

评论数:0

R语言实用函数整理

初始化 options(stringsAsFactors=F,scipen=99) rm(list=ls());gc() getwd() 获得工作路径信息 setwd() 设置工作路径 清空控制台 快捷键control+L 获取目录下所有文件名 filenames=d...

2017-03-20 22:12:33

阅读数:2491

评论数:0

gcForest算法理解

介绍gcForest(multi-Grained Cascade forest 多粒度级联森林)是周志华最新提出的新的决策树集成方法。这种方法生成一个深度树集成方法(deep forest ensemble method),使用级联结构让gcForest学习。 gcForest模型把训练分成两个...

2017-03-10 16:55:03

阅读数:3121

评论数:4

XGBoost原理与应用

基本构成boosted tree作为有监督学习算法有几个重要部分:模型、参数、目标函数、优化算法 模型 模型指给定输入x如何去预测输出y 参数 参数指我们需要学习的东西,在线性模型中,参数指我们的线性系数w 目标函数 目标函数:损失 + 正则,教我们如何去寻找一个比较好的参数 一般的...

2017-03-09 10:17:47

阅读数:4517

评论数:1

机器学习面试编程题汇总

阿里2017年3月在线编程题 package yuyin.chuli;import java.math.BigDecimal; import java.util.Scanner;public class Main { /** 请完成下面这个函数,实现题目要求的功能 **/ /** ...

2017-03-01 20:39:28

阅读数:1631

评论数:6

机器学习面试问题汇总

伪代码实现:LR、梯度下降、最小二乘、KNN、Kmeans; LR,SVM,XGBOOST推公式(手推) LR,SVM,RF,KNN,EM,Adaboost,PageRank,GBDT,Xgboost,HMM,DNN,推荐算法,聚类算法,等等机器学习领域的算法基本知识:1)监督与非监督区别;是...

2017-02-28 17:08:18

阅读数:7787

评论数:1

去掉CSDN-markdown编辑器的上传图片里面的水印

![这里写图片描述](http://img.blog.csdn.net/20170115141115170 ?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3RlcmVvaG9tb2xvZ3k= /font/5a6L5L2T/fontsize/400 ...

2017-02-21 21:02:53

阅读数:1321

评论数:5

提示
确定要删除当前文章?
取消 删除
关闭
关闭