张小凡vip
2012年中级职称软件设计师;
2017年高级职称项目管理师;
2018年CSM敏捷认证;
2019年csdn20周年直播嘉宾;
2020年高级健康管理师;
清华大学出版社《MongoDB游记》数据库教程书作者。
专注于数据挖掘技术与大数据,云计算与存储等技术的学习与研究。
擅长系统响应式开发、数据采集数据清洗和数据分析,分布式云存储运算等技术。
熟悉数据的采集、数据的清洗(ETL)、存储(Data Storage)、挖掘(Data Mining)整个流程。
熟悉后台系统、云存储计算平台的搭建,擅长解决架构过程中遇到的疑难问题。
常用开发语言:java、python、c#、perl、sql。
展开
-
(十二)人工智能应用--深度学习原理与实战--模型编译及训练参数的选择
神经网络训练要解决的问题其实是以最快的速度将误差函数(Loss)降到最小值、从而确定最优的网络参数。人工智能梯度通常指的是在机器学习和深度学习中使用的梯度,用于指示损失函数在某一点的变化速率和方向。在神经网络中,梯度表示损失函数相对于模型参数的变化率,可以帮助机器学习模型进行优化和参数更新。具体来说,人工智能梯度是指损失函数对于模型参数的偏导数,通常通过反向传播算法计算得到。梯度的方向指示了参数更新的方向,梯度的大小则表示了参数更新的步长。原创 2024-06-11 19:47:21 · 564 阅读 · 0 评论 -
(十一)人工智能应用--深度学习原理与实战--实现泰坦尼克号生存者预测案例Titanic Survival
泰但尼克号生存者预测(Titanic Survival)任务要求根据给定的1300余位乘宫的特征(姓名、性别、年龄、舱位等】及幸存情况(0-死亡,1-幸存】建立神经网络模型,能够较内准确地预测乘客样本的幸存情况。我们首先对原数据进行了多种预处理,目的是提高数据的质量,进而提升模型的性能。应熟练掌握常用的数据预处理方法。接下来,我们基于序贯模式(Sequential)搭建了包含多个全连接层(Dense层)的神经网络、需熟练掌握全连接网络层的添加方法及智数含义。原创 2023-09-07 20:30:00 · 860 阅读 · 0 评论 -
(十)人工智能应用--深度学习原理与实战--模型的保存与加载使用
Tensorflow提供了灵活的模型保存方案,我们可以将训练好的模型保存,之后可以直接加载使用,而无需重复建模训练。方案1:保存全模型方法可以将网络结构、权重信息、以及编译配置等一并保存,加载即可直接使用。方案2:保存权重方法允许仅保存网络的权重信息使用时要有搭建好的网络,无需训练。方案3:保存网络结构的方法允许仅保存网络层的构成而不保存权重,常用于恢复网络结构。模型的保存与加载是十分常用的功能,应熟练掌握。原创 2023-08-10 19:15:00 · 1080 阅读 · 0 评论 -
(九)人工智能应用--深度学习原理与实战--前馈神经网络实现MNST手写数字识别
MNIST手写数字识别是神经网络实现的第一个案例,这是一个简单的图像识别应用,我们使用Keras构建了只有两个全连接(Dense)的前馈神经网络,取得了不错的识别准确率。通过本任务大家应对于Keras构建前馈神经网络(使用序贯式模型)的过程更加熟悉,理解和掌握增加Dense层的方法及参数的含义。记住模型构建的一般步骤是 加载及预处理数据、建模【添加网络层)、编译、训练、评估、预测,并掌握Tensorflow (Keras)中对应的方法。原创 2023-08-08 19:30:00 · 819 阅读 · 0 评论 -
(八)人工智能应用--深度学习原理与实战--前馈神经网络机制解析
本章节我们了解了前馈神经网络的核心机制,包括感知机(最简单的前馈网络)、前馈与反向传擂、权重与偏移值数、激活函数的作用及类型。前馈神经网络是目前使用最广泛的神经网络之一,在图像识别和自然语言处理领域主流的两大神经网络类型——卷积神经网络(CNN)和循环神经网络(RNN)都属于前馈网络。感知机的原理、反向传擂机制、权重及偏移值箸数、以及激活函数的作用是重点,也是后续学习的前置基础,需要熟练掌握。原创 2023-07-24 21:15:00 · 508 阅读 · 0 评论 -
(六)人工智能应用--深度学习原理与实战--理解张量与运算图
1.张量(Tensor)是神经网络的基本数据结构,本质上是一种维度任意的多维数据容器。2.深度学习中使用张量来表示各种数据,如向量数据、时间序列数据、图像数据、视频数据等,需要熟悉它们的形状格式,在神经网络的训练中会经常用到。3.计算图是张量计算过程的逻辑表示,图运算非常适用于神经网络这种大规模运算场景,配合GPU的并行计算能门能够大幅提高运算效率。原创 2023-07-13 21:30:00 · 896 阅读 · 0 评论 -
(五)人工智能应用--深度学习原理与实战--Linux系统Tensorflow平台搭建
1.TensorfLow是目前企业应用最为广泛的深度学习框架,我们在Linux操作系统下完成了TensorfLow的安装及基于NVIDIA GPU的Cuda (GPU并行计算框架)、cudnn(深度学习加速平台)的安装配置。2.需要先安装python环境,建议使用Python的Anaconda发行版,该版本集成了多个科学计算包,广泛应用于数据处理与人工智能领域。3.TensorfLow、Cuda和cudnn的版本存在不兼容的情况,需要提前查询相应的对应关系。原创 2023-07-03 21:45:00 · 1120 阅读 · 0 评论 -
(三)人工智能应用--深度学习原理与实战--神经网络的工作原理
神经网络本质上是一个实现深度学习的多层数学框架,每一层都对输入数据做一定的转换,在训练(学习)的过程中不断调整优化各层的权重参数,最终得到能够准确映射输入数据和目标输出的网络模型。优化器的作用是依据误差值来逐步调整各层的权重然数,以降低误差值。这一过程的算法叫做反向传播(Backpropagation )算法,梯度下降(GD)是反向传播算法中常用的方法。通过在大量数据上多次循环训练,最终可以得到最小化的损失函数,从而得出训练好的神经网络(即能够准确映射输入数据和目标输出的深度学习模型)。原创 2023-05-16 21:45:00 · 901 阅读 · 0 评论 -
(七)人工智能应用--深度学习原理与实战--使用Keras搭建序贯式模型
1、KerasAPI已经被集成到TensorfLow2.×版本中,作为官方推荐的神经网络API。使用Keras可以非常方便地、模块化地搭建神经网络、添加多个层、并编译、训练及评估预测。2、Keras以层(Layers)为组件搭建神经网络,有两种基本模式—------序贯模式(SequentiaL)和函数式模式(FunctionaL),需要理解两种方式的特点和区别。3、Keras可以使用add方法或列表方法向序贯模型中添加网络层。原创 2023-07-21 13:34:23 · 298 阅读 · 0 评论 -
(四)人工智能应用--深度学习原理与实战--Windows系统Tensorflow平台搭建
1.TensorfLow是目前企业应用最为广泛的深度学习框架,我们在Windows操作系统下完成了Tensorflow的安装及基于NVIDIA GPU的Cuda(GPU并行计算框架)、cudnn(深度学习加速平台)的安装配置。2.需要先安装python环境,建议使用Python的Anaconda发行版,该版本集成了多个科学计算包,广泛应用于数据处理与人工智能领域。3.TensorfLow、 cuda和cudnn的版本存在不兼容的情况,需要提前查询相应的对应关系。原创 2023-06-13 21:15:00 · 1059 阅读 · 1 评论 -
(二)人工智能应用--深度学习原理与实战--机器学习简史
2010年至今,在硬件、数据、算法及框架等几个方面的推动下,深度学习技术进入蓬勃发展期,目前已经在感知类任务中占据主导地位。人工智能被称为新一轮工业革命,相关的岗位数量急剧增长。与机器学习相关的主要技术包括:Python语言、Scikit-Learn、TensorFLow(Keras) 、Pytorch等框架以及相关的开发库。原创 2023-03-28 21:15:00 · 310 阅读 · 0 评论 -
(一)人工智能应用--深度学习原理与实战--初识深度学习
人工智能是一个综合性的概念,其方法不仅仅包括机器学习和深度学习,还包括如预定义规则的专家系统。机器学习(包括深度学)的本质是让计算机自主地从数据中学习出规则,而非预定义规则。与经典的编程范式不同,机器学习的范式是输人数据和笞案(即标签)、输出规则(即模型),从而可以使用模型预测新的数据输入。深度学习是机器学习的一个分支(子集),从技术上是一种学习数据表示的多层框架(传统的机器学习算法通常只有一到两个表示层),深度学习的分层表示模型即神经网络。原创 2023-03-23 13:36:51 · 676 阅读 · 0 评论