社交标签推荐系统全解析
1. 技术与基础设施要求
实现BibSonomy的推荐服务需要解决多个问题。首先,在设计阶段就必须确保有足够的数据供推荐算法生成有用的推荐。推荐器需要访问系统数据库以及用户当前发布的内容(可以通过AJAX等技术重新加载推荐来实现)。为解决冷启动问题,还可以提供更多数据,如文档的全文。系统必须能够处理大量数据,快速选择相关子集并提供预处理方法。
可用的硬件和预期的数据量限制了可使用的推荐算法的选择。虽然有些方法允许部分预计算推荐,但这需要额外的内存,并且可能无法获得与在线计算相同的良好结果。硬件和网络基础设施都必须确保短响应时间,以便及时向用户提供推荐。结合简单且不干扰用户的界面,可确保系统的可用性。
此外,还应考虑记录用户事件(如点击、按键等),以便在在线环境中有效评估所使用的推荐方法。结合实时评估,还可以调整结果选择策略,为当前用户或资源动态选择最佳的推荐算法。BibSonomy的一项最新进展是将多种可用算法进行复用,并通过提供开放的推荐接口简单地纳入外部推荐服务。
2. 标签获取方法
标签的质量会直接影响社交标签推荐系统的性能。社交标签存在一些问题,如标签稀疏性(用户倾向于提供有限数量的标签)、多义性(标签有多种解释)和标签特异性(用于个人组织的标签,如“待读”),这些问题会影响推荐质量。因此,我们考虑以下替代的标签获取方法:
| 方法 | 优点 | 缺点 |
| — | — | — |
| 专家标签 | 标签客观,涵盖多方面,有统一的标签词汇表 | 手动工作耗时且昂贵,不可扩展 |
| 基于标注游戏的标签 | 利用人类的计算能力,标签可能高度准确 | 玩家为得分可能牺