滑动窗口的最小值问题

滑动窗口的最小值问题

滑动窗后的最小值问题。输入正整数k和一个长度为n的整数序列 A1,A2,A3,,An 。定义 f(i) 表示从元素 i 开始的连续k个元素的最小值,即 f(i)=min{Ai,Ai+1,,Ai+k1} 。要求计算 f(1),f(2),f(3),,f(nk+1) 。例如,对于序列 5,2,6,8,10,7,4k=4 ,则 f(1)=2,f(2)=2,f(3)=6,f(4)=4


假设窗口中有两个元素1和2,且1在2的右边,这意味着2如果和1在同一个窗口,2永远不可能成为最小值。换句话说,这个2是无用的,应当及时删除。当删除无用元素之后,滑动窗口中的有用元素从左到右是递增的。为了叙述方便,习惯上称其为单调队列。在单调队列中求最小值很容易:队首元素就是最小值。

当窗口滑动时,首先要删除滑动前窗口的最左边元素(如果是有用元素),然后把新元素加入单调队列。注意,比新元素大的元素都变得无用了,应当从右往左删除。如图所示是滑动窗口的4个位置所对应的单调队列。
滑动窗口对应的单调队列

实现代码

#include <iostream>
#include <queue>
using namespace std;
int main() {
    int a[] = {5, 2, 6, 8, 10, 7, 4};
    int k = 4;
    int n = 7;
    // 实现单调队列
    deque<int> dq;

    for(int i = 0; i < n; i++) {
        if(i >= k) {
            // 输出单调队列队首元素,该元素即为移动前滑动窗口的最小值
            cout << dq.front() << " ";
            // 如果移动到当前滑动窗口位置后,出去的元素恰好是单调队列最小元素,则出队它
            if(a[i - k] == dq.front()) {
                dq.pop_front();
            }
        }
        // 队列不为空且队列中最后的元素大于当前元素
        // 将队列最后元素出队
        // 因为它不可能成为最小元素了
        while(!dq.empty() && dq.back() > a[i]) {
            dq.pop_back();
        }
        // 当前元素入队
        dq.push_back(a[i]);
    }
    cout << dq.front() << endl;
    return 0;
}

输出数据

2 2 6 4

Process returned 0 (0x0)   execution time : 0.052 s
Press any key to continue.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值