转载 http://blog.csdn.net/it_zjyang/article/details/53406764 思想很清晰,特别好了。
什么是快速排序?
快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
算法原理
单单看以上解释还是有些模糊,可以通过实例来理解它,下面通过一组数据来进行排序过程的解析:
原数组:{3,7,2,9,1,4,6,8,10,5}
期望结果:{1,2,3,4,5,6,7,8,9,10}
花了点时间撸了下面这张快速排序示意图:
Demo步骤解析:
1.一开始选定数组的最后一个元素5作为基准值,也就是最终排序结果应该是以5为界限划分为左右两边。
2.从左边开始,寻找比5大的值,然后与5进行调换(因为如果比5小的值本来就应该排在5前面,比5大的值调换之后就去到了5的后面),一路过来找到了7,将7与5调换,结束此次遍历。
3.从右边开始,由于7已经是上一轮排好序的便不再动它,从10开始,一路向左遍历,寻找比5小的值,然后与5进行调换(因为如果比5大的值本来就应该排在5后面,比5小的值调换之后就去到了5的后前面),一路过来找到了4,将4与5调换,结束此次遍历。
4.从左边开始,由于3和4都是前两轮已经排好序的便不再动它,从2开始,一路向右遍历,寻找比5大的值,然后与5进行调换(道理同步骤2),一路过来找到了9,将9与5调换,结束此次遍历。
5.从右边开始,由于排在9后面的那几个数字都是上几轮排好序的便不再动它,从1开始,一路向右遍历,寻找比5小的值,然后与5进行调换(道理同步骤3),一下子就找到了1,将1与5调换,结束此次遍历。
6.这个时候,发现5的左右两边都是排好序了的,所以结束此轮排序,5的左右两边抽出来各自进行下一轮的排序,规则同上,直到无法再拆分下去,即完成了整体的快速排序。
算法实现
既然思路理清了,代码就容易上手了:
- /**
- * 快速排序
- * @author IT_ZJYANG
- */
- public class QuickSort {
- /**
- * 将数组的某一段元素进行划分,小的在左边,大的在右边
- * @param a
- * @param start
- * @param end
- * @return
- */
- public static int divide(int[] a, int start, int end){
- //每次都以最右边的元素作为基准值
- int base = a[end];
- //start一旦等于end,就说明左右两个指针合并到了同一位置,可以结束此轮循环。
- while(start < end){
- while(start < end && a[start] <= base)
- //从左边开始遍历,如果比基准值小,就继续向右走
- start++;
- //上面的while循环结束时,就说明当前的a[start]的值比基准值大,应与基准值进行交换
- if(start < end){
- //交换
- int temp = a[start];
- a[start] = a[end];
- a[end] = temp;
- //交换后,此时的那个被调换的值也同时调到了正确的位置(基准值右边),因此右边也要同时向前移动一位
- end--;
- }
- while(start < end && a[end] >= base)
- //从右边开始遍历,如果比基准值大,就继续向左走
- end--;
- //上面的while循环结束时,就说明当前的a[end]的值比基准值小,应与基准值进行交换
- if(start < end){
- //交换
- int temp = a[start];
- a[start] = a[end];
- a[end] = temp;
- //交换后,此时的那个被调换的值也同时调到了正确的位置(基准值左边),因此左边也要同时向后移动一位
- start++;
- }
- }
- //这里返回start或者end皆可,此时的start和end都为基准值所在的位置
- return end;
- }
- /**
- * 排序
- * @param a
- * @param start
- * @param end
- */
- public static void sort(int[] a, int start, int end){
- if(start > end){
- //如果只有一个元素,就不用再排下去了
- return;
- }
- else{
- //如果不止一个元素,继续划分两边递归排序下去
- int partition = divide(a, start, end);
- sort(a, start, partition-1);
- sort(a, partition+1, end);
- }
- }
- }
测试:
- public static void main(String[] args) {
- int[] a = new int[]{2,7,4,5,10,1,9,3,8,6};
- int[] b = new int[]{1,2,3,4,5,6,7,8,9,10};
- int[] c = new int[]{10,9,8,7,6,5,4,3,2,1};
- int[] d = new int[]{1,10,2,9,3,2,4,7,5,6};
- sort(a, 0, a.length-1);
- System.out.println("排序后的结果:");
- for(int x : a){
- System.out.print(x+" ");
- }
- }
打印结果:
算法优缺点
快速排序最“快”的地方在于左右两边能够快速同时递归排序下去,所以最优的情况是基准值刚好取在无序区的中间,这样能够最大效率地让两边排序,同时最大地减少递归划分的次数。此时的时间复杂度仅为O(NlogN)。
快速排序也有存在不足的情况,当每次划分基准值时,得到的基准值总是当前无序区域里最大或最小的那个元素,这种情况下基准值的一边为空,另一边则依然存在着很多元素(仅仅比排序前少了一个),此时时间复杂度为O(N*N)。
快速排序的速度快慢关键在于基准值的选取,它决定了划分次数以及比较次数,决定了快排的效率,因此,还有一些针对于基准值选取的优化方法,例如“三数据取中法”等,能够有效优化快速排序存在的不足之处。